matlab中中影象PSNR和SSIM的計算
轉:https://blog.csdn.net/xiaohaijiejie/article/details/48053595
網上找了很多關於PSNR和SSIM的計算,很多結果算出來都不一樣,公式都是普遍的,如下:
現在總結下造成結果差異的原因。
PSNR的差異:
1.灰度影象:灰度影象比較好計算,只有一個灰度值。
2.彩色影象:
(a)可以將分別計算R,G,B三個通道總和,最後MSE直接在原公式上多除以3就行(opencv官方代碼是這麼做的,與matlab直接計算結果是一樣的)。
(b)將R,G,B格式轉換為YCbCr,只計算Y分量(亮度分量),結果會比直接計算要高几個dB。
貼程式碼,這裡是將圖片格式轉成YCbCr(只計算Y分量):
function [PSNR, MSE] = psnr(X, Y)
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% 計算峰值訊雜比PSNR
% 將RGB轉成YCbCr格式進行計算
% 如果直接計算會比轉後計算值要小2dB左右(當然是個別測試)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
if size(X,3)~=1 %判斷影象時不是彩色圖,如果是,結果為3,否則為1
org=rgb2ycbcr(X);
test=rgb2ycbcr(Y);
Y1=org(:,:,1);
Y2=test(:,:,1);
Y1=double(Y1); %計算平方時候需要轉成double型別,否則uchar型別會丟失資料
Y2=double(Y2);
else %灰度影象,不用轉換
Y1=double(X);
Y2=double(Y);
end
if nargin<2
D = Y1;
else
if any(size(Y1)~=size(Y2))
error('The input size is not equal to each other!');
end
D = Y1 - Y2;
end
MSE = sum(D(:).*D(:)) / numel(Y1);
PSNR = 10*log10(255^2 / MSE);
控制檯輸入下面三條語句:
>> X= imread('C:\Users\Administrator\Desktop\noise_image.jpg');
>> Y= imread('C:\Users\Administrator\Desktop\actruel_image.jpg');
>> psnr(X, Y)
SSIM的差異:同上,如果直接不轉換成YCbCr格式,結果會偏高很多(matlab中,SSIM提出者【1】,程式碼)。opencv裡面是分別計算了R,G,B三個分量的SSIM值(官方程式碼)。最後我將3個值取了個平均(這個值比matlab裡面低很多)。
以下程式碼主要是參考原作者修改的,原始碼是直接沒有進行格式轉換,直接RGB格式,下面我是將他轉換成YCbCr計算圖片的SSIM
function [mssim, ssim_map] = ssim(img1, img2, K, window, L)
%========================================================================
%SSIM Index, Version 1.0
%Copyright(c) 2003 Zhou Wang
%All Rights Reserved.
%
%The author is with Howard Hughes Medical Institute, and Laboratory
%for Computational Vision at Center for Neural Science and Courant
%Institute of Mathematical Sciences, New York University.
%
%----------------------------------------------------------------------
%Permission to use, copy, or modify this software and its documentation
%for educational and research purposes only and without fee is hereby
%granted, provided that this copyright notice and the original authors'
%names ap pearon all copies and supporting documentation. This program
%shall not be used, rewritten, or adapted as the basis of a commercial
%software or hardware product without first obtaining permission of the
%authors. The authors make no representations about the suitability of
%this software for any purpose. It is provided "as is" without express
%or implied warranty.
%----------------------------------------------------------------------
%
%This is an implementation of the algorithm for calculating the
%Structural SIMilarity (SSIM) index between two images. Please refer
%to the following paper:
%
%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
%quality assessment: From error visibility to structural similarity"
%IEEE Transactios on Image Processing, vol. 13, no. 4, pp.600-612,
%Apr. 2004.
%
%Kindly report any suggestions or corrections to zhouwang@ieee.org
%
%----------------------------------------------------------------------
%
%Input : (1) img1: the first image being compared
% (2) img2: the second image being compared
% (3) K: constants in the SSIM index formula (see the above
% reference). defualt value: K = [0.01 0.03]
% (4) window: local window for statistics (see the above
% reference). default widnow is Gaussian given by
% window = fspecial('gaussian', 11, 1.5);
% (5) L: dynamic range of the images. default: L = 255
%
%Output: (1) mssim: the mean SSIM index value between 2 images.
% If one of the images being compared is regarded as
% perfect quality, then mssim can be considered as the
% quality measure of the other image.
% If img1 = img2, then mssim = 1.
% (2) ssim_map: the SSIM index map of the test image. The map
% has a smaller size than the input images. The actual size:
% size(img1) - size(window) + 1.
%
%Default Usage:
% Given 2 test images img1 and img2, whose dynamic range is 0-255
%
% [mssim ssim_map] = ssim_index(img1, img2);
%
%Advanced Usage:
% User defined parameters. For example
%
% K = [0.05 0.05];
% window = ones(8);
% L = 100;
% [mssim ssim_map] = ssim_index(img1, img2, K, window, L);
%
%See the results:
%
% mssim %Gives the mssim value
% imshow(max(0, ssim_map).^4) %Shows the SSIM index map
%
%========================================================================
if (nargin < 2 | nargin > 5)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
if (size(img1) ~= size(img2))
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
[M N] = size(img1);
if (nargin == 2)
if ((M < 11) | (N < 11)) % 影象大小過小,則沒有意義。
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5); % 引數一個標準偏差1.5,11*11的高斯低通濾波。
K(1) = 0.01; % default settings
K(2) = 0.03;
L = 255;
end
if (nargin == 3)
if ((M < 11) | (N < 11))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5);
L = 255;
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 4)
[H W] = size(window);
if ((H*W) < 4 | (H > M) | (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
L = 255;
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 5)
[H W] = size(window);
if ((H*W) < 4 | (H > M) | (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
end
if size(img1,3)~=1 %判斷影象時不是彩色圖,如果是,結果為3,否則為1
org=rgb2ycbcr(img1);
test=rgb2ycbcr(img2);
y1=org(:,:,1);
y2=test(:,:,1);
y1=double(y1);
y2=double(y2);
else
y1=double(img1);
y2=double(img2);
end
img1 = double(y1);
img2 = double(y2);
% automatic downsampling
%f = max(1,round(min(M,N)/256));
%downsampling by f
%use a simple low-pass filter
% if(f>1)
% lpf = ones(f,f);
% lpf = lpf/sum(lpf(:));
% img1 = imfilter(img1,lpf,'symmetric','same');
% img2 = imfilter(img2,lpf,'symmetric','same');
% img1 = img1(1:f:end,1:f:end);
% img2 = img2(1:f:end,1:f:end);
% end
C1 = (K(1)*L)^2; % 計算C1引數,給亮度L(x,y)用。 C1=6.502500
C2 = (K(2)*L)^2; % 計算C2引數,給對比度C(x,y)用。 C2=58.522500
window = window/sum(sum(window)); %濾波器歸一化操作。
mu1 = filter2(window, img1, 'valid'); % 對影象進行濾波因子加權 valid改成same結果會低一丟丟
mu2 = filter2(window, img2, 'valid'); % 對影象進行濾波因子加權
mu1_sq = mu1.*mu1; % 計算出Ux平方值。
mu2_sq = mu2.*mu2; % 計算出Uy平方值。
mu1_mu2 = mu1.*mu2; % 計算Ux*Uy值。
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; % 計算sigmax (標準差)
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; % 計算sigmay (標準差)
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; % 計算sigmaxy(標準差)
if (C1 > 0 & C2 > 0)
ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
numerator1 = 2*mu1_mu2 + C1;
numerator2 = 2*sigma12 + C2;
denominator1 = mu1_sq + mu2_sq + C1;
denominator2 = sigma1_sq + sigma2_sq + C2;
ssim_map = ones(size(mu1));
index = (denominator1.*denominator2 > 0);
ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
index = (denominator1 ~= 0) & (denominator2 == 0);
ssim_map(index) = numerator1(index)./denominator1(index);
end
mssim = mean2(ssim_map);
return
控制檯輸入以下程式碼:
>> img1= imread('C:\Users\Administrator\Desktop\noise_image.jpg');
>> img2= imread('C:\Users\Administrator\Desktop\actruel_image.jpg');
>> ssim(img1,img2)
最後說一句,不管是結果如何,只要對比實驗用的同一種評價程式碼工具,無所謂結果和原論文一不一樣,問題是很多論文實驗都搞不出來滴
參考文獻
【1】Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
相關文章
- MATLAB中的影象融合Matlab
- matlab中將RGB影象轉化為灰度影象Matlab
- opencv-9-影像噪聲以及評估指標 PSNR 與SSIMOpenCV指標
- matlab對不定積分和定積分的計算Matlab
- YUV影像質量的客觀評估SSIM matlab程式碼實現Matlab
- 計算機視覺—影象特效(3)計算機視覺特效
- 影象中的畫素處理
- Flink流計算中SQL表的概念和原理SQL
- 計算機網路中的速率和頻寬計算機網路
- matlab計算含有未知數的矩陣Matlab矩陣
- [Python影象處理] 十.形態學之影象頂帽運算和黑帽運算Python
- [譯]計算機如何高效識別影象?計算機
- 複習Vue中的方法,計算和偵聽者Vue
- Vue中計算屬性和偵聽器Vue
- Shader 中的顏色計算
- Shader 中的座標計算
- 圖解計算機中的數值範圍和浮點運算圖解計算機
- Vue中的計算屬性和偵聽器比較Vue
- 計算機系統中的大端模式和小端模式計算機模式
- 影象相似度中的Hash演算法演算法
- MATLAB R2023a 數學計算和程式設計軟體 mac版Matlab程式設計Mac
- Matlab中erf函式的用法Matlab函式
- BIRT 中組內跨行計算和小計怎麼做
- MATLAB R2023b for Mac 專業的程式設計和數學計算軟體MatlabMac程式設計
- 功能強大的程式設計和數學計算軟體:MATLAB R2023b程式設計Matlab
- MATLAB呼叫NASTRAN的連續計算解決方案MatlabAST
- matlab中如何能統計點出現的頻次呢?Matlab
- 雲端計算中容器的功能
- 卷積神經網路中感受野的理解和計算卷積神經網路
- HuggingFace在NLP和計算機視覺中的應用 - Reddit計算機視覺
- MATLAB R2022a for Mac(專業程式設計和數學計算軟體)MatlabMac程式設計
- Mac專業程式設計和數學計算軟體:MATLAB R2022aMac程式設計Matlab
- 計算機影象與視覺入門必備計算機視覺
- 後端請求中的非同步計算與平行計算後端非同步
- 圖片相似度對比SSIM和PHash
- 計算中綴表示式
- 關於Matlab中符號運算的因式分解、展開與合併Matlab符號
- [Python影象處理] 九.形態學之影象開運算、閉運算、梯度運算Python梯度