此篇文章在2022年9月22日被記錄
ADPCM是一種很簡單實現的音訊編碼方式,真正的PCM相當佔用記憶體,這對網路和記憶體的壓力是相當大的,因此通常需要壓縮編碼,ADPCM是一種可以執行在微控制器上的編碼方式,原理如下:
由於聲音訊號具有波形上的連續性,因此相鄰兩個取樣值大小也非常接近,記錄單個取樣值通常需要 16bit,而記錄前後兩個取樣點的差值(差分法),往往只需要 4bit,這便是 ADPCM 壓縮編碼的基本原理,因此透過 ADPCM 編碼的音訊檔案,其大小隻有 PCM 格式的四分之一。
不僅如此,ADPCM 的智慧之處在於,對於變化劇烈的波形,演算法透過自適應機制,能自動改變差分值的度量粒度,即使是抖動較大的訊號,也可以保證前後取樣差值總能用固定的 4bit 表示。在 PCM 編碼的基礎上增加 「差分」和「自適應」的特性,便是 ADPCM(Adaptive Differential Pulse Code Modulation 自適應差分脈衝編碼調製) 名稱的由來。
當然,ADPCM 演算法實現簡單、壓縮率高的同時,必然要付出音質損失的代價 —— ADPCM 格式檔案的聲音聽起來會略為粗糙,被同樣是有失真壓縮的 MP3 編碼吊打,不過用於提示音、人聲講話等場合還是綽綽有餘。
實際上在STM32L476@80Mhz微控制器上測試,編碼320個16bit資料需要時間在1ms內,解碼幾乎不佔用時間,這意味著在微控制器上具有較強的實時性。
如何實現:
在網上嫖到的adpcm.c、adpcm.h
-------------------------------原始檔-----------------------------------
#include "adpcm.h"
#include <stdio.h> /*DBG*/
#ifndef __STDC__
#define signed
#endif
/* Intel ADPCM step variation table */
static int indexTable[16] = {
-1, -1, -1, -1, 2, 4, 6, 8,
-1, -1, -1, -1, 2, 4, 6, 8,
};
static int stepsizeTable[89] = {
7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
};
void adpcm_coder(short *indata, signed char *outdata, int len, struct adpcm_state *state)
{
short *inp; /* Input buffer pointer */
signed char *outp; /* output buffer pointer */
int val; /* Current input sample value */
int sign; /* Current adpcm sign bit */
int delta; /* Current adpcm output value */
int diff; /* Difference between val and valprev */
int step; /* Stepsize */
int valpred; /* Predicted output value */
int vpdiff; /* Current change to valpred */
int index; /* Current step change index */
int outputbuffer; /* place to keep previous 4-bit value */
int bufferstep; /* toggle between outputbuffer/output */
outp = (signed char *)outdata;
inp = indata;
valpred = state->valprev;
index = state->index;
step = stepsizeTable[index];
bufferstep = 1;
for ( ; len > 0 ; len-- ) {
val = *inp++;
/* Step 1 - compute difference with previous value */
diff = val - valpred;
sign = (diff < 0) ? 8 : 0;
if ( sign ) diff = (-diff);
/* Step 2 - Divide and clamp */
/* Note:
** This code *approximately* computes:
** delta = diff*4/step;
** vpdiff = (delta+0.5)*step/4;
** but in shift step bits are dropped. The net result of this is
** that even if you have fast mul/div hardware you cannot put it to
** good use since the fixup would be too expensive.
*/
delta = 0;
vpdiff = (step >> 3);
if ( diff >= step ) {
delta = 4;
diff -= step;
vpdiff += step;
}
step >>= 1;
if ( diff >= step ) {
delta |= 2;
diff -= step;
vpdiff += step;
}
step >>= 1;
if ( diff >= step ) {
delta |= 1;
vpdiff += step;
}
/* Step 3 - Update previous value */
if ( sign )
valpred -= vpdiff;
else
valpred += vpdiff;
/* Step 4 - Clamp previous value to 16 bits */
if ( valpred > 32767 )
valpred = 32767;
else if ( valpred < -32768 )
valpred = -32768;
/* Step 5 - Assemble value, update index and step values */
delta |= sign;
index += indexTable[delta];
if ( index < 0 ) index = 0;
if ( index > 88 ) index = 88;
step = stepsizeTable[index];
/* Step 6 - Output value
if ( bufferstep ) {
outputbuffer = (delta << 4) & 0xf0;
} else {
*outp++ = (delta & 0x0f) | outputbuffer;
}*/
if ( bufferstep ) {
outputbuffer = delta & 0x0f;
} else {
*outp++ = ((delta << 4) & 0xf0) | outputbuffer;
}
bufferstep = !bufferstep;
}
/* Output last step, if needed */
if ( !bufferstep )
*outp++ = outputbuffer;
state->valprev = valpred;
state->index = index;
}
void adpcm_decoder(signed char *indata, short *outdata, int len, struct adpcm_state *state)
{
signed char *inp; /* Input buffer pointer */
short *outp; /* output buffer pointer */
int sign; /* Current adpcm sign bit */
int delta; /* Current adpcm output value */
int step; /* Stepsize */
int valpred; /* Predicted value */
int vpdiff; /* Current change to valpred */
int index; /* Current step change index */
int inputbuffer; /* place to keep next 4-bit value */
int bufferstep; /* toggle between inputbuffer/input */
outp = outdata;
inp = (signed char *)indata;
valpred = state->valprev;
index = state->index;
step = stepsizeTable[index];
bufferstep = 0;
for ( ; len > 0 ; len-- ) {
/* Step 1 - get the delta value */
if ( !bufferstep ) {
inputbuffer = *inp++;
delta = inputbuffer & 0xf;
} else {
delta = (inputbuffer >> 4) & 0xf;
}
bufferstep = !bufferstep;
/* Step 2 - Find new index value (for later) */
index += indexTable[delta];
if ( index < 0 ) index = 0;
if ( index > 88 ) index = 88;
/* Step 3 - Separate sign and magnitude */
sign = delta & 8;
delta = delta & 7;
/* Step 4 - Compute difference and new predicted value */
/*
** Computes 'vpdiff = (delta+0.5)*step/4', but see comment
** in adpcm_coder.
*/
vpdiff = step >> 3;
if ( delta & 4 ) vpdiff += step;
if ( delta & 2 ) vpdiff += step>>1;
if ( delta & 1 ) vpdiff += step>>2;
if ( sign )
valpred -= vpdiff;
else
valpred += vpdiff;
/* Step 5 - clamp output value */
if ( valpred > 32767 )
valpred = 32767;
else if ( valpred < -32768 )
valpred = -32768;
/* Step 6 - Update step value */
step = stepsizeTable[index];
/* Step 7 - Output value */
*outp++ = valpred;
}
state->valprev = valpred;
state->index = index;
}
------------------------------------------------標頭檔案---------------------------
#ifndef ADPCM_H
#define ADPCM_H
#include <stdint.h>
struct adpcm_state
{
int valprev;
int index;
};
extern void adpcm_coder(short *indata, signed char *outdata, int len, struct adpcm_state *state);
extern void adpcm_decoder(signed char *indata, short *outdata, int len, struct adpcm_state *state);
#endif /*ADPCM_H*/
HOW TO USE ?
ADPCM不用設定那麼多引數,直接來解碼編碼:
建立兩個編解碼引數,主要是用來儲存上次的資料
struct adpcm_state myENadpcm,myDEadpcm;
myENadpcm.index=0;
myENadpcm.valprev=0;
myDEadpcm.index=0;
myDEadpcm.valprev=0;
編解碼函式呼叫:
+ adpcm_coder(原始資料陣列, 編碼後的資料陣列, 編碼前的資料長度, &myENadpcm);
+ adpcm_decoder(編碼後的資料, 解碼後的資料, 編碼後的資料長度, &myDEadpcm);
實際測試上,在微控制器上執行,相比於原聲具有較強的電子音,就像是牙籤的babiQ~,相對來說,OPUS的效果更好,但是資源佔用也更高。