原文:www.e4rl.com/archives/198.html
原文已無法訪問 ,所以特意從百度快照搬運過來。
ThinkPHP:github.com/top-think/framework
think-captcha:github.com/top-think/think-captcha
captcha_trainer (訓練):github.com/kerlomz/captcha_trainer
captcha_platform (部署):github.com/kerlomz/captcha_platfor...
MuggleOCR:pypi.org/project/muggle-ocr
captcha_trainer 作者介紹:www.jianshu.com/p/80ef04b16efc
矩池雲 GPU伺服器:matpool.com/
使用 ThinkPHP 呼叫 think-captcha 生成驗證碼
composer create-project topthink/think tp cd tp composer require topthink/think-captcha php think run
修改 think-captcha 原始碼,將驗證碼儲存到 Session
在vendor/topthink/think-captcha/src/Captcha.php:195
插入以下程式碼Session::set('captcha', implode('', $code), '');
在控制器內列印驗證碼
public function code() { $code = Session::get('captcha', ''); echo $code; }
使用 Python 抓取圖片驗證碼樣本,按照 captcha_trainer 預設規則重新命名儲存
import requests import threading import os import hashlib # def md5(s, salt=''): new_s = str(s) + salt m = hashlib.md5(new_s.encode()) return m.hexdigest() # def get_captcha(): session = requests.session() for i in range(0, 100000): try: content = session.get('http://x.com/captcha?'+str(i)) if content.status_code != 200: continue code = session.get('http://x.com/index/Home/code') if code.status_code != 200: continue filename = '{}_{}.png'.format(code.text, md5(content.content)) with open(os.path.join('captcha_images', filename), 'wb') as f: f.write(content.content) f.close() except Exception as e: print(str(e)) # for i in range(1, 20): t = threading.Thread(target=get_captcha, args=()) t.start()
租用矩池雲 RTX 2080 Ti 的GPU伺服器進行訓練
使用 captcha_trainer 進行訓練
配置訓練環境及專案pip3 install -r requirements.txt pip3 install tensorflow-gpu # tensorflow模組需獨立安裝 mkdir -p projects/{project name}/ vi projects/{project name}/model.yaml
model.yaml
模板引數介紹請參考 captcha_trainer 專案介紹,可以用 Windows 編譯版生成後上傳至伺服器,需保持專案名一致。
專案名 TP-CNNX-GRU-H64-CTC-C1./projects/TP-CNNX-GRU-H64-CTC-C1/model.yaml
# - requirement.txt - GPU: tensorflow-gpu, CPU: tensorflow
# - If you use the GPU version, you need to install some additional applications.
System:
MemoryUsage: 0.8
Version: 2
# CNNNetwork: [CNN5, ResNet, DenseNet]
# RecurrentNetwork: [CuDNNBiLSTM, CuDNNLSTM, CuDNNGRU, BiLSTM, LSTM, GRU, BiGRU, NoRecurrent]
# - The recommended configuration is CNN5+GRU
# UnitsNum: [16, 64, 128, 256, 512]
# - This parameter indicates the number of nodes used to remember and store past states.
# Optimizer: Loss function algorithm for calculating gradient.
# - [AdaBound, Adam, Momentum]
# OutputLayer: [LossFunction, Decoder]
# - LossFunction: [CTC, CrossEntropy]
# - Decoder: [CTC, CrossEntropy]
NeuralNet:
CNNNetwork: CNNX
RecurrentNetwork: GRU
UnitsNum: 64
Optimizer: RAdam
OutputLayer:
LossFunction: CTC
Decoder: CTC
# ModelName: Corresponding to the model file in the model directory
# ModelField: [Image, Text]
# ModelScene: [Classification]
# - Currently only Image-Classification is supported.
Model:
ModelName: TP-CNNX-GRU-H64-CTC-C1
ModelField: Image
ModelScene: Classification
# FieldParam contains the Image, Text.
# When you filed to Image:
# - Category: Provides a default optional built-in solution:
# -- [ALPHANUMERIC, ALPHANUMERIC_LOWER, ALPHANUMERIC_UPPER,
# -- NUMERIC, ALPHABET_LOWER, ALPHABET_UPPER, ALPHABET, ALPHANUMERIC_CHS_3500_LOWER]
# - or can be customized by:
# -- ['Cat', 'Lion', 'Tiger', 'Fish', 'BigCat']
# - Resize: [ImageWidth, ImageHeight/-1, ImageChannel]
# - ImageChannel: [1, 3]
# - In order to automatically select models using image size, when multiple models are deployed at the same time:
# -- ImageWidth: The width of the image.
# -- ImageHeight: The height of the image.
# - MaxLabelNum: You can fill in -1, or any integer, where -1 means not defining the value.
# -- Used when the number of label is fixed
# When you filed to Text:
# This type is temporarily not supported.
FieldParam:
Category: ['2', '3', '4', '5', '6', '7', '8', 'a', 'b', 'c', 'd', 'e', 'f', 'h', 'i', 'j', 'k', 'm', 'n', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'T', 'U', 'V', 'W', 'X', 'Y']
Resize: [224, 70]
ImageChannel: 1
ImageWidth: 224
ImageHeight: 70
MaxLabelNum: 4
OutputSplit:
AutoPadding: True
# The configuration is applied to the label of the data source.
# LabelFrom: [FileName, XML, LMDB]
# ExtractRegex: Only for methods extracted from FileName:
# - Default matching apple_20181010121212.jpg file.
# - The Default is .*?(?=_.*\.)
# LabelSplit: Only for methods extracted from FileName:
# - The split symbol in the file name is like: cat&big cat&lion_20181010121212.png
# - The Default is null.
Label:
LabelFrom: FileName
ExtractRegex: .*?(?=_)
LabelSplit:
# DatasetPath: [Training/Validation], The local absolute path of a packed training or validation set.
# SourcePath: [Training/Validation], The local absolute path to the source folder of the training or validation set.
# ValidationSetNum: This is an optional parameter that is used when you want to extract some of the validation set
# - from the training set when you are not preparing the validation set separately.
# SavedSteps: A Session.run() execution is called a Step,
# - Used to save training progress, Default value is 100.
# ValidationSteps: Used to calculate accuracy, Default value is 500.
# EndAcc: Finish the training when the accuracy reaches [EndAcc*100]% and other conditions.
# EndCost: Finish the training when the cost reaches EndCost and other conditions.
# EndEpochs: Finish the training when the epoch is greater than the defined epoch and other conditions.
# BatchSize: Number of samples selected for one training step.
# ValidationBatchSize: Number of samples selected for one validation step.
# LearningRate: [0.1, 0.01, 0.001, 0.0001]
# - Use a smaller learning rate for fine-tuning.
Trains:
DatasetPath:
Training:
- ./projects/TP-CNNX-GRU-H64-CTC-C1/dataset/Trains.0.tfrecords
Validation:
- ./projects/TP-CNNX-GRU-H64-CTC-C1/dataset/Validation.0.tfrecords
SourcePath:
Training:
- /root/captcha_images
Validation:
ValidationSetNum: 300
SavedSteps: 100
ValidationSteps: 500
EndAcc: 0.95
EndCost: 0.5
EndEpochs: 2
BatchSize: 64
ValidationBatchSize: 300
LearningRate: 0.001
# Binaryzation: The argument is of type list and contains the range of int values, -1 is not enabled.
# MedianBlur: The parameter is an int value, -1 is not enabled.
# GaussianBlur: The parameter is an int value, -1 is not enabled.
# EqualizeHist: The parameter is an bool value.
# Laplace: The parameter is an bool value.
# WarpPerspective: The parameter is an bool value.
# Rotate: The parameter is a positive integer int type greater than 0, -1 is not enabled.
# PepperNoise: This parameter is a float type less than 1, -1 is not enabled.
# Brightness: The parameter is an bool value.
# Saturation: The parameter is an bool value.
# Hue: The parameter is an bool value.
# Gamma: The parameter is an bool value.
# ChannelSwap: The parameter is an bool value.
# RandomBlank: The parameter is a positive integer int type greater than 0, -1 is not enabled.
# RandomTransition: The parameter is a positive integer int type greater than 0, -1 is not enabled.
DataAugmentation:
Binaryzation: -1
MedianBlur: -1
GaussianBlur: -1
EqualizeHist: False
Laplace: False
WarpPerspective: False
Rotate: -1
PepperNoise: -1.0
Brightness: False
Saturation: False
Hue: False
Gamma: False
ChannelSwap: False
RandomBlank: -1
RandomTransition: -1
RandomCaptcha:
Enable: False
FontPath:
# Binaryzation: The parameter is an integer number between 0 and 255, -1 is not enabled.
# ReplaceTransparent: Transparent background replacement, bool type.
# HorizontalStitching: Horizontal stitching, bool type.
# ConcatFrames: Horizontally merge two frames according to the provided frame index list, -1 is not enabled.
# BlendFrames: Fusion corresponding frames according to the provided frame index list, -1 is not enabled.
# - [-1] means all frames
Pretreatment:
Binaryzation: -1
ReplaceTransparent: True
HorizontalStitching: False
ConcatFrames: -1
BlendFrames: -1
ExecuteMap: {}
打包訓練集後開始訓練
python3 make_dataset.py TP-CNNX-GRU-H64-CTC-C1
python3 trains.py TP-CNNX-GRU-H64-CTC-C1
- Linux 訓練環境強制結束任務
因為 think-captcha 隨機呼叫系統字型生成圖片驗證碼,部分字型顯示只有大寫字母,與 think-captcha 生成的驗證碼存在大小寫偏差,導致 captcha_trainer 訓練正確率只能維持在 0.6 左右,無法滿足結束訓練任務的 0.95 正確率,但忽略大小寫後的正確率已滿足需求,所以需要強制結束訓練任務,編譯模型。
Windows 環境下可以直接點選 Stop 按鈕結束任務後再點選 Compile 按鈕編譯模型。
Linux 環境結束任務需要修改 trains.py
程式碼,簡單分析後發現 trains.py
共有兩處正確率判斷
# trains.py:308
# 滿足終止條件但尚未完成當前epoch時跳出epoch迴圈
if self.achieve_cond(acc=accuracy, cost=batch_cost, epoch=epoch_count):
break
# trains.py:314
if self.achieve_cond(acc=accuracy, cost=batch_cost, epoch=epoch_count):
# sess.close()
tf.compat.v1.keras.backend.clear_session()
sess.close()
self.compile_graph(accuracy)
tf.compat.v1.logging.info('Total Time: {} sec.'.format(time.time() - start_time))
找到程式碼後直接簡單粗暴的把判斷條件改成 1==1
讓條件成立即可結束任務
# trains.py:308
# 滿足終止條件但尚未完成當前epoch時跳出epoch迴圈
if 1==1:
break
# trains.py:314
if 1==1:
# sess.close()
tf.compat.v1.keras.backend.clear_session()
sess.close()
self.compile_graph(accuracy)
tf.compat.v1.logging.info('Total Time: {} sec.'.format(time.time() - start_time))
captcha_trainer
支援中斷任務恢復,修改程式碼後按 Ctrl+C
結束任務,重新執行 python3 trains.py
,初始化後將直接結束訓練任務,編譯模型。
使用 captcha_platform 專案進行 docker 部署
將 captcha_trainer 訓練後編譯生成的模型複製到 captcha_platform 專案中
mv -rf captcha_trainer/out/* captcha_platform/
構建並啟動 docker
cd captcha_platform/ docker build . docker run -d -p 19952:19952 [image:tag]
13萬 think-captcha 圖片驗證碼樣本經過約 11 個小時的訓練後,使用未經過訓練的新樣本進行識別測試,識別成功率在 95% 左右
使用 Python 指令碼進行識別測試
import requests
import base64
import os
import re
#
dir = 'test-1' # 未經過訓練的圖片驗證碼樣本目錄
success = 0
error = 0
count = 0
file_list = os.listdir(dir)
#
for i in range(0, 1000):
filename = file_list[i]
origin = re.match(r'.*?(?=_.*\.)', filename).group()
if not origin:
continue
src = os.path.join(dir, filename)
img = base64.b64encode(open(src, 'rb').read())
post_data = {
'image': img,
'model_name': 'TP-CNNX-GRU-H64-CTC-C1'
}
res = requests.post('http://localhost:19952/captcha/v1', data=post_data)
json_res = res.json()
# 忽略大小寫
if json_res['code'] == 0 and str(json_res['message']).upper() == origin.upper():
print('Sample: {}, Identify: {}, Status: {}'.format(org, json_res['message'], 'success'))
success += 1
else:
print('Sample: {}, Identify: {}, Status: {}'.format(org, json_res['message'], 'error'))
error += 1
count += 1
print('Count: {}, Success: {}, Error: {}'.format(count, success, error))
模型下載
連結: pan.baidu.com/s/1e0quRSqMV8lP6XXoS... 提取碼:sg6c
本作品採用《CC 協議》,轉載必須註明作者和本文連結