Java實現平滑加權輪詢演算法--降權和提權

淵渟嶽發表於2022-04-12

上一篇講了普通輪詢、加權輪詢的兩種實現方式,重點講了平滑加權輪詢演算法,並在文末留下了懸念:節點出現分配失敗時降低有效權重值;成功時提高有效權重值(但不能大於weight值)

本文在平滑加權輪詢演算法的基礎上講,還沒弄懂的可以看上一篇文章。

現在來模擬實現:平滑加權輪詢演算法的降權和提權

1.兩個關鍵點

節點當機時,降低有效權重值;

節點正常時,提高有效權重值(但不能大於weight值);

注意:降低或提高權重都是針對有效權重

2.程式碼實現

2.1.服務節點類

package com.yty.loadbalancingalgorithm.wrr;

/**
 * String ip:負載IP
 * final Integer weight:權重,儲存配置的權重
 * Integer effectiveWeight:有效權重,輪詢的過程權重可能變化
 * Integer currentWeight:當前權重,比對該值大小獲取節點
 *   第一次加權輪詢時:currentWeight = weight = effectiveWeight
 *   後面每次加權輪詢時:currentWeight 的值都會不斷變化,其他權重不變
 * Boolean isAvailable:是否存活
 */
public class ServerNode implements Comparable<ServerNode>{
    private String ip;
    private final Integer weight;
    private Integer effectiveWeight;
    private Integer currentWeight;
    private Boolean isAvailable;

    public ServerNode(String ip, Integer weight){
        this(ip,weight,true);
    }
    public ServerNode(String ip, Integer weight,Boolean isAvailable){
        this.ip = ip;
        this.weight = weight;
        this.effectiveWeight = weight;
        this.currentWeight = weight;
        this.isAvailable = isAvailable;
    }

    public String getIp() {
        return ip;
    }

    public void setIp(String ip) {
        this.ip = ip;
    }

    public Integer getWeight() {
        return weight;
    }

    public Integer getEffectiveWeight() {
        return effectiveWeight;
    }

    public void setEffectiveWeight(Integer effectiveWeight) {
        this.effectiveWeight = effectiveWeight;
    }

    public Integer getCurrentWeight() {
        return currentWeight;
    }

    public void setCurrentWeight(Integer currentWeight) {
        this.currentWeight = currentWeight;
    }

    public Boolean isAvailable() {
        return isAvailable;
    }
    public void setIsAvailable(Boolean isAvailable){
        this.isAvailable = isAvailable;
    }

    // 每成功一次,恢復有效權重1,不超過配置的起始權重
    public void onInvokeSuccess(){
        if(effectiveWeight < weight) effectiveWeight++;
    }
    // 每失敗一次,有效權重減少1,無底線的減少
    public void onInvokeFault(){
        effectiveWeight--;
    }

    @Override
    public int compareTo(ServerNode node) {
        return currentWeight > node.currentWeight ? 1 : (currentWeight.equals(node.currentWeight) ? 0 : -1);
    }

    @Override
    public String toString() {
        return "{ip='" + ip + "', weight=" + weight + ", effectiveWeight=" + effectiveWeight
                + ", currentWeight=" + currentWeight + ", isAvailable=" + isAvailable + "}";
    }
}

2.2.平滑輪詢演算法降權和提權

package com.yty.loadbalancingalgorithm.wrr;

import java.util.ArrayList;
import java.util.List;

/**
 * 加權輪詢演算法:加入存活狀態,降權使當機權重降低,從而不會被選中
 */
public class WeightedRoundRobinAvailable {

    private static List<ServerNode> serverNodes = new ArrayList<>();
    // 準備模擬資料
    static {
        serverNodes.add(new ServerNode("192.168.1.101",1));// 預設為true
        serverNodes.add(new ServerNode("192.168.1.102",3,false));
        serverNodes.add(new ServerNode("192.168.1.103",2));
    }

    /**
     * 按照當前權重(currentWeight)最大值獲取IP
     * @return ServerNode
     */
    public ServerNode selectNode(){
        if (serverNodes.size() <= 0) return null;
        if (serverNodes.size() == 1)
            return (serverNodes.get(0).isAvailable()) ? serverNodes.get(0) : null;
        
        // 權重之和
        Integer totalWeight = 0;
        ServerNode nodeOfMaxWeight = null; // 儲存輪詢選中的節點資訊
        synchronized (serverNodes){
            StringBuffer sb1 = new StringBuffer();
            StringBuffer sb2 = new StringBuffer();
            sb1.append(Thread.currentThread().getName()+"==加權輪詢--[當前權重]值的變化:"+printCurrentWeight(serverNodes));
            // 有限權重總和可能發生變化
            for(ServerNode serverNode : serverNodes){
                totalWeight += serverNode.getEffectiveWeight();
            }

            // 選出當前權重最大的節點
            ServerNode tempNodeOfMaxWeight = serverNodes.get(0);
            for (ServerNode serverNode : serverNodes) {
                if (serverNode.isAvailable()) {
                    serverNode.onInvokeSuccess();//提權
                    sb2.append(Thread.currentThread().getName()+"==[正常節點]:"+serverNode+"\n");
                } else {
                    serverNode.onInvokeFault();//降權
                    sb2.append(Thread.currentThread().getName()+"==[當機節點]:"+serverNode+"\n");
                }

                tempNodeOfMaxWeight = tempNodeOfMaxWeight.compareTo(serverNode) > 0 ? tempNodeOfMaxWeight : serverNode;
            }
            // 必須new個新的節點例項來儲存資訊,否則引用指向同一個堆例項,後面的set操作將會修改節點資訊
            nodeOfMaxWeight = new ServerNode(tempNodeOfMaxWeight.getIp(),tempNodeOfMaxWeight.getWeight(),tempNodeOfMaxWeight.isAvailable());
            nodeOfMaxWeight.setEffectiveWeight(tempNodeOfMaxWeight.getEffectiveWeight());
            nodeOfMaxWeight.setCurrentWeight(tempNodeOfMaxWeight.getCurrentWeight());

            // 調整當前權重比:按權重(effectiveWeight)的比例進行調整,確保請求分發合理。
            tempNodeOfMaxWeight.setCurrentWeight(tempNodeOfMaxWeight.getCurrentWeight() - totalWeight);
            sb1.append(" -> "+printCurrentWeight(serverNodes));

            serverNodes.forEach(serverNode -> serverNode.setCurrentWeight(serverNode.getCurrentWeight()+serverNode.getEffectiveWeight()));

            sb1.append(" -> "+printCurrentWeight(serverNodes));
            System.out.print(sb2);  //所有節點的當前資訊
            System.out.println(sb1); //列印當前權重變化過程
        }
        return nodeOfMaxWeight;
    }

    // 格式化列印資訊
    private String printCurrentWeight(List<ServerNode> serverNodes){
        StringBuffer stringBuffer = new StringBuffer("[");
        serverNodes.forEach(node -> stringBuffer.append(node.getCurrentWeight()+",") );
        return stringBuffer.substring(0, stringBuffer.length() - 1) + "]";
    }

    // 併發測試:兩個執行緒迴圈獲取節點
    public static void main(String[] args) throws InterruptedException {
        // 迴圈次數
        int loop = 18;

        new Thread(() -> {
            WeightedRoundRobinAvailable weightedRoundRobin1 = new WeightedRoundRobinAvailable();
            for(int i=1;i<=loop;i++){
                ServerNode serverNode = weightedRoundRobin1.selectNode();
                System.out.println(Thread.currentThread().getName()+"==第"+i+"次輪詢選中[當前權重最大]的節點:" + serverNode + "\n");
            }
        }).start();
        //
        new Thread(() -> {
            WeightedRoundRobinAvailable weightedRoundRobin2 = new WeightedRoundRobinAvailable();
            for(int i=1;i<=loop;i++){
                ServerNode serverNode = weightedRoundRobin2.selectNode();
                System.out.println(Thread.currentThread().getName()+"==第"+i+"次輪詢選中[當前權重最大]的節點:" + serverNode + "\n");
            }
        }).start();

        //main 執行緒睡了一下,再偷偷把 所有當機 拉起來:模擬伺服器恢復正常
        Thread.sleep(5);
        for (ServerNode serverNode:serverNodes){
            if(!serverNode.isAvailable())
                serverNode.setIsAvailable(true);
        }
    }
}

3.分析結果

執行結果:將執行結果的前中後四次抽出來分析

Thread-0==[正常節點]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=1, isAvailable=true}

Thread-0==[當機節點]:{ip='192.168.1.102', weight=3, effectiveWeight=2, currentWeight=3, isAvailable=false}

Thread-0==[正常節點]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=2, isAvailable=true}

Thread-0==加權輪詢--[當前權重]值的變化:[1,3,2] -> [1,-3,2] -> [2,-1,4]

Thread-0==第1次輪詢選中[當前權重最大]的節點:{ip='192.168.1.102', weight=3, effectiveWeight=2, currentWeight=3, isAvailable=false}

……

Thread-1==[正常節點]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=6, isAvailable=true}

Thread-1==[當機節點]:{ip='192.168.1.102', weight=3, effectiveWeight=-7, currentWeight=-21, isAvailable=false}

Thread-1==[正常節點]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=12, isAvailable=true}

Thread-1==加權輪詢--[當前權重]值的變化:[6,-21,12] -> [6,-21,15] -> [7,-28,17]

Thread-1==第5次輪詢選中[當前權重最大]的節點:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=12, isAvailable=true}

……

Thread-0==[正常節點]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=13, isAvailable=true}

Thread-0==[正常節點]:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=-19, isAvailable=true}

Thread-0==[正常節點]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=12, isAvailable=true}

Thread-0==加權輪詢--[當前權重]值的變化:[13,-19,12] -> [7,-19,12] -> [8,-16,14]

Thread-0==第15次輪詢選中[當前權重最大]的節點:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=13, isAvailable=true}

……

Thread-1==[正常節點]:{ip='192.168.1.101', weight=1, effectiveWeight=1, currentWeight=2, isAvailable=true}

Thread-1==[正常節點]:{ip='192.168.1.102', weight=3, effectiveWeight=3, currentWeight=2, isAvailable=true}

Thread-1==[正常節點]:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=2, isAvailable=true}

Thread-1==加權輪詢--[當前權重]值的變化:[2,2,2] -> [2,2,-4] -> [3,5,-2]

Thread-1==第18次輪詢選中[當前權重最大]的節點:{ip='192.168.1.103', weight=2, effectiveWeight=2, currentWeight=2, isAvailable=true}

分析

一開始權重最高的節點雖然是當機了,但是還是會被選中並返回;

“有效權重總和” 和 “當前權重總和”都減少了1,因為設定輪詢到失敗節點,都會自減1;

到第5次輪詢時,當前權重已經變成了[7,-28,17],可以看出當機節點越往後當前權重越小,所以後面根本不會再選中當機節點,雖然沒剔除故障節點,但卻起到不分配當機節點

到第15次輪詢時,有效權重已經恢復起始值,當前權重變為[8,-16,14],當前權重只能慢慢恢復,並不是節點一正常就立即恢復當機過的節點,起到對故障節點的緩衝恢復(故障過的節點可能還存在問題);

最後1次輪詢時,因為沒有當機節點,所以有效權重不變,當前權重已經恢復[3,5,-2],如果再輪詢一次,那就會訪問到一開始故障的節點了。

4.結論

降權起到緩慢“剔除”當機節點的效果;提權起到緩衝恢復當機節點的效果。

對比上一篇文章可以看到:

當前權重(currentWeight):針對的是節點的選擇,受有效權重影響,起到緩慢“剔除”當機節點和緩衝恢復當機節點的效果,當前權重最高就會被選擇;

有效權重(effectiveWeight):針對的是權重的變化,也即是降權和提權,降權/提權只會直接操作有效權重;

權重(weight):針對的是儲存起始配置,限定有效權重的提權。

image

Java實現負載均衡演算法--輪詢和加權輪詢

Java往期文章

Java全棧學習路線、學習資源和麵試題一條龍

我心裡優秀架構師是怎樣的?

免費下載經典程式設計書籍

image

相關文章