摘要:Hive UDF是什麼?有什麼用?怎麼用?什麼原理?本文從UDF使用入手,簡要介紹相關原始碼,UDF從零開始。
本文分享自華為雲社群《Hive UDF,就這》,作者:湯忒撒。
Hive中內建了很多函式,同時支援使用者自行擴充套件,按規則新增後即可在sql執行過程中使用,目前支援UDF、UDTF、UDAF三種型別,一般UDF應用場景較多,本文主要介紹UDF使用,簡要介紹相關原始碼。
UDF,(User Defined Function)使用者自定義函式
UDTF,(User-defined Table Generating Function)自定義表生成函式,一行資料生成多行
UDAF,(User-defined Aggregation Function)使用者自定義聚合函式,多行資料生成一行
1. UDF簡介
UDF包含兩種型別:1、臨時函式僅當前會話中有效,退出後重新連線即無法使用;2、永久函式註冊UDF資訊到MetaStore後設資料中,可永久使用。
實現UDF需要繼承特定類UDF或GenericUDF二選一。
- apache.hadoop.hive.ql.exec.UDF,處理並返回基本資料型別,int、string、boolean、double等;
- apache.hadoop.hive.ql.udf.generic.GenericUDF,可處理並返回複雜資料型別,如Map、List、Array等,同時支援巢狀;
2. UDF相關語法
UDF使用需要將編寫的UDF類編譯為jar包新增到Hive中,根據需要建立臨時函式或永久函式。
2.1. resources操作
Hive支援向會話中新增資源,支援檔案、jar、存檔,新增後即可在sql中直接引用,僅當前會話有效,預設讀取本地路徑,支援hdfs等,路徑不加引號。例:add jar /opt/ht/AddUDF.jar;
新增資源 ADD { FILE[S] | JAR[S] | ARCHIVE[S] } <filepath1> [<filepath2>]* 檢視資源 LIST { FILE[S] | JAR[S] | ARCHIVE[S] } [<filepath1> <filepath2> ..] 刪除資源 DELETE { FILE[S] | JAR[S] | ARCHIVE[S] } [<filepath1> <filepath2> ..]
2.2. 臨時函式
僅當前會話有效,不支援指定資料庫,USING路徑需加引號。
CREATE TEMPORARY FUNCTION function_name AS class_name [USING JAR|FILE|ARCHIVE 'file_uri' [, JAR|FILE|ARCHIVE 'file_uri'] ]; DROP TEMPORARY FUNCTION [IF EXISTS] function_name;
2.3. 永久函式
函式資訊入庫,永久有效,USING路徑需加引號。臨時函式與永久函式均可使用USING語句,Hive會自動新增指定檔案到當前環境中,效果與add語句相同,執行後即可list檢視已新增的檔案或jar包。
CREATE FUNCTION [db_name.]function_name AS class_name [USING JAR|FILE|ARCHIVE 'file_uri' [, JAR|FILE|ARCHIVE 'file_uri'] ]; DROP FUNCTION [IF EXISTS] function_name; RELOAD (FUNCTIONS|FUNCTION);
2.4. 檢視函式
檢視所有函式,不區分臨時函式與永久函式 show functions; 函式模糊查詢,此處為查詢x開頭的函式 show functions like 'x*'; 檢視函式描述 desc function function_name; 檢視函式詳細描述 desc function extended function_name;
3. Description註解
Hive已定義註解型別org.apache.hadoop.hive.ql.exec.Description,用於執行desc function [extended] function_name時介紹函式功能,內建函式與自定義函式用法相同。
【備註】若Description註解名稱與建立UDF時指定名稱不同,以建立UDF時指定名稱為準。
public @interface Description { //函式簡單介紹 String value() default "_FUNC_ is undocumented"; //函式詳細使用說明 String extended() default ""; //函式名稱 String name() default ""; }
例:Hive內建ceil函式GenericUDFCeil程式碼定義如下,
desc function ceil;
desc function extended ceil;
4. UDF
繼承UDF類必須實現evaluate方法,支援定義多個evaluate方法不同引數列表用於處理不同型別資料,如下
public Text evaluate(Text s) public int evaluate(Integer s) …
4.1. UDF示例
實現UDF函式,若字串執行拼接,int型別執行加法運算。
@Description( name="my_plus", value="my_plus() - if string, do concat; if integer, do plus", extended = "Example : \n >select my_plus('a', 'b');\n >ab\n >select my_plus(3, 5);\n >8" ) public class AddUDF extends UDF { public String evaluate(String... parameters) { if (parameters == null || parameters.length == 0) { return null; } StringBuilder sb = new StringBuilder(); for (String param : parameters) { sb.append(param); } return sb.toString(); } public int evaluate(IntWritable... parameters) { if (parameters == null || parameters.length == 0) { return 0; } long sum = 0; for (IntWritable currentNum : parameters) { sum = Math.addExact(sum, currentNum.get()); } return (int) sum; } }
hdfs dfs -put AddUDF.jar /tmp/ht/
create function my_plus as 'com.huawei.ht.test.AddUDF' using jar 'hdfs:///tmp/ht/AddUDF.jar';
desc function my_plus;
desc function extended my_plus;
UDF新增後記錄在後設資料表FUNCS、FUNC_RU表中
4.2. 原始碼淺析
UDF類呼叫入口為方法解析器,預設方法解析器DefaultUDFMethodResolver,執行時由解析器反射獲取UDF類的evaluate方法執行,類程式碼如下:
UDF
public class UDF { //udf方法解析器 private UDFMethodResolver rslv; //預設構造器DefaultUDFMethodResolver public UDF() { rslv = new DefaultUDFMethodResolver(this.getClass()); } protected UDF(UDFMethodResolver rslv) { this.rslv = rslv; } public void setResolver(UDFMethodResolver rslv) { this.rslv = rslv; } public UDFMethodResolver getResolver() { return rslv; } public String[] getRequiredJars() { return null; } public String[] getRequiredFiles() { return null; } }
DefaultUDFMethodResolver
public class DefaultUDFMethodResolver implements UDFMethodResolver { //The class of the UDF. private final Class<? extends UDF> udfClass; public DefaultUDFMethodResolver(Class<? extends UDF> udfClass) { this.udfClass = udfClass; } @Override public Method getEvalMethod(List<TypeInfo> argClasses) throws UDFArgumentException { return FunctionRegistry.getMethodInternal(udfClass, "evaluate", false, argClasses); } }
5. GenericUDF
GenericUDF相比與UDF功能更豐富,支援所有引數型別,引數型別由ObjectInspector封裝;引數Writable類由DeferredObject封裝,使用時簡單型別可直接從Writable獲取,複雜型別可由ObjectInspector解析。
繼承GenericUDF必須實現如下3個介面:
//初始化,ObjectInspector為資料型別封裝類,無實際引數值,返回結果型別 public ObjectInspector initialize(ObjectInspector[] objectInspectors) throws UDFArgumentException { return null; } //DeferredObject封裝實際引數的對應Writable類 public Object evaluate(DeferredObject[] deferredObjects) throws HiveException { return null; } //函式資訊 public String getDisplayString(String[] strings) { return null; }
5.1. GenericUDF示例
自定義函式實現count函式,支援int與long型別,Hive中無long型別,對應型別為bigint,create function與資料庫儲存與UDF一致,此處不再贅述。
initialize,遍歷ObjectInspector[]檢查每個引數型別,根據引數型別構造ObjectInspectorConverters.Converter,用於將Hive傳遞的引數型別轉換為對應的Writable封裝物件ObjectInspector,供後續統一處理。
evaluate,初始化時已記錄每個引數具體型別,從DeferredObject中獲取物件,根據型別使用對應Converter物件轉換為Writable執行計算。
例:處理int型別,
UDF查詢常量時,DeferredObject中封裝型別為IntWritable;
UDF查詢表欄位時,DeferredObject中封裝型別為LazyInteger。
@Description( name="my_count", value="my_count(...) - count int or long type numbers", extended = "Example :\n >select my_count(3, 5);\n >8\n >select my_count(3, 5, 25);\n >33" ) public class MyCountUDF extends GenericUDF { private PrimitiveObjectInspector.PrimitiveCategory[] inputType; private transient ObjectInspectorConverters.Converter intConverter; private transient ObjectInspectorConverters.Converter longConverter; @Override public ObjectInspector initialize(ObjectInspector[] objectInspectors) throws UDFArgumentException { int length = objectInspectors.length; inputType = new PrimitiveObjectInspector.PrimitiveCategory[length]; for (int i = 0; i < length; i++) { ObjectInspector currentOI = objectInspectors[i]; ObjectInspector.Category type = currentOI.getCategory(); if (type != ObjectInspector.Category.PRIMITIVE) { throw new UDFArgumentException("The function my_count need PRIMITIVE Category, but get " + type); } PrimitiveObjectInspector.PrimitiveCategory primitiveType = ((PrimitiveObjectInspector) currentOI).getPrimitiveCategory(); inputType[i] = primitiveType; switch (primitiveType) { case INT: if (intConverter == null) { ObjectInspector intOI = PrimitiveObjectInspectorFactory.getPrimitiveWritableObjectInspector(primitiveType); intConverter = ObjectInspectorConverters.getConverter(currentOI, intOI); } break; case LONG: if (longConverter == null) { ObjectInspector longOI = PrimitiveObjectInspectorFactory.getPrimitiveWritableObjectInspector(primitiveType); longConverter = ObjectInspectorConverters.getConverter(currentOI, longOI); } break; default: throw new UDFArgumentException("The function my_count need INT OR BIGINT, but get " + primitiveType); } } return PrimitiveObjectInspectorFactory.writableLongObjectInspector; } @Override public Object evaluate(DeferredObject[] deferredObjects) throws HiveException { LongWritable out = new LongWritable(); for (int i = 0; i < deferredObjects.length; i++) { PrimitiveObjectInspector.PrimitiveCategory type = this.inputType[i]; Object param = deferredObjects[i].get(); switch (type) { case INT: Object intObject = intConverter.convert(param); out.set(Math.addExact(out.get(), ((IntWritable) intObject).get())); break; case LONG: Object longObject = longConverter.convert(param); out.set(Math.addExact(out.get(), ((LongWritable) longObject).get())); break; default: throw new IllegalStateException("Unexpected type in MyCountUDF evaluate : " + type); } } return out; } @Override public String getDisplayString(String[] strings) { return "my_count(" + Joiner.on(", ").join(strings) + ")"; } }
create function my_count as 'com.huawei.ht.test.MyCountUDF' using jar 'hdfs:///tmp/countUDF.jar';
create table test_numeric(i1 int, b1 bigint, b2 bigint, i2 int, i3 int);
insert into table test_numeric values(0, -10, 25, 300, 15), (11, 22, 33, 44, 55);
select *, my_count(*) from test_numeric;
5.2. 原始碼淺析
GenericUDF內部定義了方法呼叫順序,子類實現相應功能即可,呼叫時根據函式名稱從FunctionRegistry中獲取UDF物件,返回執行結果。
Hive中資料型別均使用ObjectInspector封裝,為區分普通型別與負責結構型別,定義列舉Category,共包含PRIMITIVE,LIST,MAP,STRUCT,UNION這5種型別,其中PRIMITIVE表示普通型別(int、long、double等)。
ObjectInspector
public interface ObjectInspector extends Cloneable { //用於型別名稱 String getTypeName(); //用於獲取ObjectInspector封裝的欄位型別 ObjectInspector.Category getCategory(); public static enum Category { PRIMITIVE, LIST, MAP, STRUCT, UNION; private Category() { } } }
PrimitiveObjectInspector.PrimitiveCategory,基本型別
public static enum PrimitiveCategory { VOID, BOOLEAN, BYTE, SHORT, INT, LONG, … }
GenericUDF. initializeAndFoldConstants
呼叫initialize獲取輸出ObjectInspector,若為常量型別,直接evaluate計算結果值。
此方法編譯階段通過AST構造Operator遍歷sql節點時,常量直接計算結果值,其他型別僅執行initialize。
計算表欄位時,在MR等任務中,Operator執行時呼叫initialize、evaluate計算結果值(例:SelectOperator)。
public ObjectInspector initializeAndFoldConstants(ObjectInspector[] arguments) throws UDFArgumentException { ObjectInspector oi = this.initialize(arguments); if (this.getRequiredFiles() == null && this.getRequiredJars() == null) { boolean allConstant = true; for(int ii = 0; ii < arguments.length; ++ii) { if (!ObjectInspectorUtils.isConstantObjectInspector(arguments[ii])) { allConstant = false; break; } } if (allConstant && !ObjectInspectorUtils.isConstantObjectInspector((ObjectInspector)oi) && FunctionRegistry.isConsistentWithinQuery(this) && ObjectInspectorUtils.supportsConstantObjectInspector((ObjectInspector)oi)) { GenericUDF.DeferredObject[] argumentValues = new GenericUDF.DeferredJavaObject[arguments.length]; for(int ii = 0; ii < arguments.length; ++ii) { argumentValues[ii] = new GenericUDF.DeferredJavaObject(((ConstantObjectInspector)arguments[ii]).getWritableConstantValue()); } try { Object constantValue = this.evaluate(argumentValues); oi = ObjectInspectorUtils.getConstantObjectInspector((ObjectInspector)oi, constantValue); } catch (HiveException var6) { throw new UDFArgumentException(var6); } } return (ObjectInspector)oi; } else { return (ObjectInspector)oi; } }
6. UDF相關原始碼
6.1. 運算子
Hive SQL中,“+、-、*、/、=”等運算子都是是UDF函式,在FunctionRegistry中宣告,所有UDF均在編譯階段由AST生成Operator樹時解析,常量直接計算結果值,其他型別僅初始化,獲取輸出型別用於生成Operator樹,後續在Operator真正執行時計算結果值。
static { HIVE_OPERATORS.addAll(Arrays.asList( "+", "-", "*", "/", "%", "div", "&", "|", "^", "~", "and", "or", "not", "!", "=", "==", "<=>", "!=", "<>", "<", "<=", ">", ">=", "index")); }
6.2. 函式型別
Hive中包含BUILTIN, PERSISTENT, TEMPORARY三種函式;
public static enum FunctionType { BUILTIN, PERSISTENT, TEMPORARY; }
6.3. FunctionRegistry
Hive的所有UDF均由FunctionRegistry管理,FunctionRegistry僅管理記憶體中的UDF,不運算元據庫。
內建函式都在FunctionRegistry靜態塊中初始化,不在資料庫中記錄;使用者自定義UDF新增、刪除都在HiveServer本地執行,臨時函式在SessionState中處理,永久函式由FunctionTask呼叫FunctionRegistry對應方法處理,載入後FunctionTask負責寫庫。
public final class FunctionRegistry { … private static final Registry system = new Registry(true); static { system.registerGenericUDF("concat", GenericUDFConcat.class); system.registerUDF("substr", UDFSubstr.class, false); … } … public static void registerTemporaryMacro( String macroName, ExprNodeDesc body, List<String> colNames, List<TypeInfo> colTypes) { SessionState.getRegistryForWrite().registerMacro(macroName, body, colNames, colTypes); } public static FunctionInfo registerPermanentFunction(String functionName, String className, boolean registerToSession, FunctionResource[] resources) { return system.registerPermanentFunction(functionName, className, registerToSession, resources); } … }
6.4. GenericUDFBridge
Hive中UDF與GenericUDF實際均以GenericUDF方式處理,通過GenericUDFBridge適配,GenericUDFBridge繼承GenericUDF。
新增UDF時,FunctionRegistry呼叫Registry物件新增UDF,Registry將UDF封裝為GenericUDFBridge儲存到內建中。
Registry
private FunctionInfo registerUDF(String functionName, FunctionType functionType, Class<? extends UDF> UDFClass, boolean isOperator, String displayName, FunctionResource... resources) { validateClass(UDFClass, UDF.class); FunctionInfo fI = new FunctionInfo(functionType, displayName, new GenericUDFBridge(displayName, isOperator, UDFClass.getName()), resources); addFunction(functionName, fI); return fI; }
GenericUDFBridge
內部根據引數反射獲取UDF類evaluate方法並適配引數,自動轉化為相應型別,故UDF不需要感知函式本地執行與yarn執行時的具體型別是否一致。
部分程式碼如下:
public GenericUDFBridge(String udfName, boolean isOperator, String udfClassName) { this.udfName = udfName; this.isOperator = isOperator; this.udfClassName = udfClassName; } @Override public ObjectInspector initialize(ObjectInspector[] arguments) throws UDFArgumentException { //初始化UDF物件 try { udf = (UDF)getUdfClassInternal().newInstance(); } catch (Exception e) { throw new UDFArgumentException( "Unable to instantiate UDF implementation class " + udfClassName + ": " + e); } // Resolve for the method based on argument types ArrayList<TypeInfo> argumentTypeInfos = new ArrayList<TypeInfo>( arguments.length); for (ObjectInspector argument : arguments) { argumentTypeInfos.add(TypeInfoUtils .getTypeInfoFromObjectInspector(argument)); } udfMethod = udf.getResolver().getEvalMethod(argumentTypeInfos); udfMethod.setAccessible(true); // Create parameter converters conversionHelper = new ConversionHelper(udfMethod, arguments); // Create the non-deferred realArgument realArguments = new Object[arguments.length]; // Get the return ObjectInspector. ObjectInspector returnOI = ObjectInspectorFactory .getReflectionObjectInspector(udfMethod.getGenericReturnType(), ObjectInspectorOptions.JAVA); return returnOI; } @Override public Object evaluate(DeferredObject[] arguments) throws HiveException { assert (arguments.length == realArguments.length); // Calculate all the arguments for (int i = 0; i < realArguments.length; i++) { realArguments[i] = arguments[i].get(); } // Call the function,反射執行UDF類evaluate方法 Object result = FunctionRegistry.invoke(udfMethod, udf, conversionHelper .convertIfNecessary(realArguments)); // For non-generic UDF, type info isn't available. This poses a problem for Hive Decimal. // If the returned value is HiveDecimal, we assume maximum precision/scale. if (result != null && result instanceof HiveDecimalWritable) { result = HiveDecimalWritable.enforcePrecisionScale ((HiveDecimalWritable) result, HiveDecimal.SYSTEM_DEFAULT_PRECISION, HiveDecimal.SYSTEM_DEFAULT_SCALE); } return result; }
6.5. 函式呼叫入口
sql中使用函式時,可能有3處呼叫,不同版本程式碼行數可能不一致,流程類似。
1. 編譯時遍歷語法樹轉換Operator。
TypeCheckProcFactory.getXpathOrFuncExprNodeDesc中根據sql中運算子或UDF名稱生成表示式物件ExprNodeGenericFuncDesc,內部呼叫GenericUDF方法。
2. 啟用常量傳播優化器優化時,ConstantPropagate中遍歷樹過程呼叫;
此優化器預設開啟,可引數控制"hive.optimize.constant.propagation"。
ConstantPropagate優化時遍歷節點,嘗試提前計算常量表示式,由ConstantPropagateProcFactory.evaluateFunction計算UDF。
3. UDF引數不是常量,SQL按計劃執行過程中Operator真正執行時;
Operator真正執行時,由ExprNodeGenericFuncEvaluator. _evaluate處理每行資料,計算UDF結果值。
@Override protected Object _evaluate(Object row, int version) throws HiveException { if (isConstant) { // The output of this UDF is constant, so don't even bother evaluating. return ((ConstantObjectInspector) outputOI).getWritableConstantValue(); } rowObject = row; for (GenericUDF.DeferredObject deferredObject : childrenNeedingPrepare) { deferredObject.prepare(version); } return genericUDF.evaluate(deferredChildren); }