微信公眾號:蘇言論
理論聯絡實際,暢言技術與生活。
消費組和消費者是kafka中比較重要的概念,理解和掌握原理有利於優化kafka效能和處理消費積壓問題。Kafka topic 由多個分割槽組成,分割槽分佈在叢集節點上;
Topic:topic01 PartitionCount:10 ReplicationFactor:2 Configs:
Topic: topic01 Partition: 0 Leader: 1 Replicas: 1,4 Isr: 1,4
Topic: topic01 Partition: 1 Leader: 2 Replicas: 2,5 Isr: 2,5
Topic: topic01 Partition: 2 Leader: 3 Replicas: 3,1 Isr: 3,1
Topic: topic01 Partition: 3 Leader: 4 Replicas: 4,2 Isr: 4,2
Topic: topic01 Partition: 4 Leader: 5 Replicas: 5,3 Isr: 5,3
Topic: topic01 Partition: 5 Leader: 1 Replicas: 1,3 Isr: 1,3
Topic: topic01 Partition: 6 Leader: 2 Replicas: 2,4 Isr: 2,4
Topic: topic01 Partition: 7 Leader: 3 Replicas: 3,5 Isr: 3,5
Topic: topic01 Partition: 8 Leader: 4 Replicas: 4,1 Isr: 4,1
Topic: topic01 Partition: 9 Leader: 5 Replicas: 5,2 Isr: 5,2
當外部程式消費topic資料時,kafka將其視為消費組(ConsumerGroup),每個消費組包含1個或多個消費者(Consumer),消費者數量最多可以為分割槽總數量,並不是可以無限量。當消費組中的任意一個消費者終止時,kafka會對消費組進行平衡(Rebalance),再根據存活消費數和消費者分配策略重新分配消費者。在0.10.x版本中,kafka提供兩種分配策略(RangeAssignor、RoundRobinAssignor),0.11.x 版本新增策略(StickyAssignor),結構如下;
1 RangeAssignor 策略
RangeAssignor 以主題為單位,以資料順序排列可用分割槽,以字典順序排列消費者,將topic分割槽數除以消費者總數,以確定分配給每個消費者的分割槽數;如果沒有平均分配,那麼前幾個消費者將擁有一個額外的分割槽。實現程式碼;
for (String memberId : subscriptions.keySet())
assignment.put(memberId, new ArrayList<TopicPartition>());
for (Map.Entry<String, List<String>> topicEntry : consumersPerTopic.entrySet()) {
String topic = topicEntry.getKey();
List<String> consumersForTopic = topicEntry.getValue();
Integer numPartitionsForTopic = partitionsPerTopic.get(topic);
if (numPartitionsForTopic == null)
continue;
Collections.sort(consumersForTopic);
int numPartitionsPerConsumer = numPartitionsForTopic / consumersForTopic.size(); //topic分割槽數除以消費者總數
int consumersWithExtraPartition = numPartitionsForTopic % consumersForTopic.size(); //計算額外分割槽
List<TopicPartition> partitions = AbstractPartitionAssignor.partitions(topic, numPartitionsForTopic);
for (int i = 0, n = consumersForTopic.size(); i < n; i++) {
int start = numPartitionsPerConsumer * i + Math.min(i, consumersWithExtraPartition);
int length = numPartitionsPerConsumer + (i + 1 > consumersWithExtraPartition ? 0 : 1);
assignment.get(consumersForTopic.get(i)).addAll(partitions.subList(start, start + length));
}
}
比如有兩個topic(topic1 ,topic2) ,每個topic都有三個分割槽;
- topic1 ,分割槽:topic1p0,topic1p1,topic1p2
- topic2 ,分割槽:topic2p0,topic2p1,topic2p2
和一個消費組(consumer_group1),有(consumer1,consumer2)兩個消費者,使用RangeAssignor策略可能會得到如下的分配:
- consumer1: [topic1p0,topic1p1,topic2p0,topic2p1]
- consumer2: [topic1p2,topic2p2]
如果此時消費組(consumer_group1)有新的消費者consumer3加入,使用RangeAssignor策略可能會得到如下的分配:
- consumer1: [topic1p0,topic2p0]
- consumer2: [topic1p2,topic2p2]
- consumer3: [topic1p1,topic2p1]
2 RoundRobinAssignor 策略
RoundRobinAssignor 是kafka預設策略,對所有分割槽和所有消費者迴圈分配,分割槽更均衡;實現程式碼;
Map<String, List<TopicPartition>> assignment = new HashMap<>();
for (String memberId : subscriptions.keySet())
assignment.put(memberId, new ArrayList<TopicPartition>());
CircularIterator<String> assigner = new CircularIterator<>(Utils.sorted(subscriptions.keySet()));
for (TopicPartition partition : allPartitionsSorted(partitionsPerTopic, subscriptions)) {
final String topic = partition.topic();
while (!subscriptions.get(assigner.peek()).topics().contains(topic))
assigner.next();
assignment.get(assigner.next()).add(partition);
}
繼續以上例topic和消費組為例,RoundRobinAssignor 策略可能會得到如下的分配;
- consumer1: [topic1p0,topic1p1,topic2p2,]
- consumer2: [topic2p0,topic2p1,topic1p2]
3 StickyAssignor 策略
StickyAssignor 策略是最複雜且是0.11.x 版本出現的新策略,該策略主要作用:
- 使topic分割槽分配儘可能均勻的分配給消費者
- 當某個消費者終止觸發重新分配時,儘可能保留現有分配,將已經終止的消費者所分配的分割槽移動到另一個消費者,避免全部分割槽重新平衡,節省開銷。
這個策略自0.11.x 版本出現後,一直到新版本有不同bug被發現,低版本慎用。
4 java多執行緒消費例項
public class KafkaTopicConsumer {
private KafkaConsumer<String, String> consumer;
private int consumerId=0; //消費例項id
private final long timeOut=10000;
public KafkaTopicConsumer(int consumerId){
this.consumerId=consumerId;
Properties props = new Properties();
props.put("client.id", "client-" + consumerId);
props.put("bootstrap.servers","192.168.1.10:9092,192.168.1.11:9092");
props.put("group.id", "test-group03");
props.put("zookeeper.session.timeout.ms", "4000");
props.put("zookeeper.sync.time.ms", "200");
props.put("enable.auto.commit", "false");
props.put("auto.offset.reset", "earliest");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
//設定分割槽策略
props.put("partition.assignment.strategy", "org.apache.kafka.clients.consumer.RangeAssignor");
consumer = new KafkaConsumer<String, String>(props);
consumer.subscribe(Arrays.asList("topic1","topic2"));
}
public void consume() {
while (true){
ConsumerRecords<String, String> records=consumer.poll(timeOut);
System.out.println("records count:"+records.count());
for (ConsumerRecord<String, String> record : records) {
System.out.println(String.format("client-id = %d , topic = %s, partition = %d , offset = %d, key = %s, value = %s", this.consumerId,record.topic(), record.partition(), record.offset(), record.key(), record.value()));
}
consumer.commitSync();
}
}
public static void main(String[] args) {
int threadSize=Integer.parseInt(args[0]);
for (int i = 0; i < threadSize; i++) {
int id = i;
new Thread() {
@Override
public void run() {
new KafkaTopicConsumer(id).consume();
}
}.start();
}
}//
}
啟動三個多執行緒例項消費,分割槽分配到每個消費者的情況;
GROUP TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG OWNER
test-group03 topic2 0 0 3333 3333 client-0_/192.168.1.13
test-group03 topic1 0 500 3333 2833 client-0_/192.168.1.13
test-group03 topic2 2 0 3333 3333 client-2_/192.168.1.13
test-group03 topic1 2 500 3333 2833 client-2_/192.168.1.13
test-group03 topic2 1 500 3334 2834 client-1_/192.168.1.13
test-group03 topic1 1 0 3334 3334 client-1_/192.168.1.13
對於大的topic,將topic單獨消費以避免資料積壓和topic各自影響資料處理速度,比如文章開始時提到的10分割槽的topic(topic01),根據硬體資源和分割槽策略設定合理的消費者,資料量大時最優的消費者數量為分割槽總數。
GROUP TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG OWNER
test-group02 topic01 6 373460 1026328 652868 client-6_/192.168.1.13
test-group02 topic01 2 375660 1048756 673096 client-2_/192.168.1.13
test-group02 topic01 5 374625 1013157 638532 client-5_/192.168.1.13
test-group02 topic01 3 347001 1066967 719966 client-3_/192.168.1.13
test-group02 topic01 0 375570 1013261 637691 client-0_/192.168.1.13
test-group02 topic01 9 376545 1094088 717543 client-9_/192.168.1.13
test-group02 topic01 8 347082 1066948 719866 client-8_/192.168.1.13
test-group02 topic01 7 375100 1048827 673727 client-7_/192.168.1.13
test-group02 topic01 1 372447 1026467 654020 client-1_/192.168.1.13
test-group02 topic01 4 377052 1093926 716874 client-4_/192.168.1.13
5 總結
Kafka提供三種分配策略(RangeAssignor、RoundRobinAssignor、StickyAssignor),其中StickyAssignor策略是0.11.x 版本新增的,每種策略不盡相同,RangeAssignor策略以主題為單位,以資料順序排列可用分割槽,以字典順序排列消費者計算分配;RoundRobinAssignor 對所有分割槽和所有消費者迴圈均勻分配;但這兩種分配策略當有消費者終止或加入時均會觸發消費組平衡;StickyAssignor 策略當某個消費者終止時,儘可能保留現有分配,將已經終止的消費者所分配的分割槽移動到另一個消費者,避免全部分割槽重新平衡,節省開銷;對於topic分割槽數較多、數量較大使用StickyAssignor策略有較大優勢。
參考文獻
- https://kafka.apache.org/0100/javadoc - kafka 0.10.0.1 API
- https://kafka.apache.org/0100/documentation.html - kafka DOCUMENTATION