前言
微笑挖坑,努力填坑。
———— 已經擁有黑眼圈,但還沒學會小豬老師時間管理學的蠻三刀同學
我們來討論秒殺系統中快取熱點資料的問題,進一步延伸到資料庫和快取的雙寫一致性問題,並且給出了實現程式碼。
本篇文章主要內容
- 快取熱點資料
- 為何要使用快取
- 哪類資料適合快取
- 快取的利與弊
- 快取和資料庫雙寫一致性
- 不使用更新快取而是刪除快取
- 先刪除快取,還是先運算元據庫?
- 我一定要資料庫和快取資料一致怎麼辦
- 實戰:先刪除快取,再更新資料庫
- 實戰:先更新資料庫,再刪快取
- 實戰:刪除快取重試機制
- 實戰:刪除快取重試機制
- 實戰:讀取binlog非同步刪除快取
歡迎關注我的個人公眾號獲取最全的原創文章:後端技術漫談(二維碼見文章底部)
專案原始碼在這裡
媽媽再也不用擔心我看完文章不會寫程式碼實現啦:
https://github.com/qqxx6661/miaosha
正文
快取熱點資料
在秒殺實際的業務中,一定有很多需要做快取的場景,比如售賣的商品,包括名稱,詳情等。訪問量很大的資料,可以算是“熱點”資料了,尤其是一些讀取量遠大於寫入量的資料,更應該被快取,而不應該讓請求打到資料庫上。
為何要使用快取
快取是為了追求“快”而存在的。我們用程式碼舉一個例子。
拿出我之前三篇文章的專案程式碼來,在其中增加兩個查詢庫存的介面getStockByDB和getStockByCache,分別表示從資料庫和快取查詢某商品的庫存量。
隨後我們用JMeter進行併發請求測試。(JMeter的使用請參考我的第一篇秒殺系統文章)
/**
* 查詢庫存:通過資料庫查詢庫存
* @param sid
* @return
*/
@RequestMapping("/getStockByDB/{sid}")
@ResponseBody
public String getStockByDB(@PathVariable int sid) {
int count;
try {
count = stockService.getStockCountByDB(sid);
} catch (Exception e) {
LOGGER.error("查詢庫存失敗:[{}]", e.getMessage());
return "查詢庫存失敗";
}
LOGGER.info("商品Id: [{}] 剩餘庫存為: [{}]", sid, count);
return String.format("商品Id: %d 剩餘庫存為:%d", sid, count);
}
/**
* 查詢庫存:通過快取查詢庫存
* 快取命中:返回庫存
* 快取未命中:查詢資料庫寫入快取並返回
* @param sid
* @return
*/
@RequestMapping("/getStockByCache/{sid}")
@ResponseBody
public String getStockByCache(@PathVariable int sid) {
Integer count;
try {
count = stockService.getStockCountByCache(sid);
if (count == null) {
count = stockService.getStockCountByDB(sid);
LOGGER.info("快取未命中,查詢資料庫,並寫入快取");
stockService.setStockCountToCache(sid, count);
}
} catch (Exception e) {
LOGGER.error("查詢庫存失敗:[{}]", e.getMessage());
return "查詢庫存失敗";
}
LOGGER.info("商品Id: [{}] 剩餘庫存為: [{}]", sid, count);
return String.format("商品Id: %d 剩餘庫存為:%d", sid, count);
}
在設定為10000個併發請求的情況下,執行JMeter,結果首先出現了大量的報錯,10000個請求中98%的請求都直接失敗了。開啟日誌,報錯如下:
原來是SpringBoot內建的Tomcat最大併發數搞的鬼,其預設值為200,對於10000的併發,單機服務實在是力不從心。當然,你可以修改這裡的併發數設定,但是你的小機器仍然可能會扛不住。
將其修改為如下配置後,我的小機器才在通過快取拿庫存的情況下,保證了10000個併發的100%返回請求:
server.tomcat.max-threads=10000
server.tomcat.max-connections=10000
不使用快取的情況下,吞吐量為668個請求每秒,並且有5%的請求由於服務壓力實在太大,沒有返回庫存資料:
使用快取的情況下,吞吐量為2177個請求每秒:
在這種“不嚴謹”的對比下,有快取對於一臺單機,效能提升了3倍多,如果在多臺機器,更多併發的情況下,由於資料庫有了更大的壓力,快取的效能優勢應該會更加明顯。
測完了這個小實驗,我看了眼我掛著Mysql的小水管騰訊雲伺服器,生怕他被這麼高流量搞掛。這種突發的流量,指不定會被檢測為異常攻擊流量呢~
我用的是騰訊雲伺服器1C4G2M,活動買的,很便宜。
哪類資料適合快取
快取量大但又不常變化的資料,比如詳情,評論等。對於那些經常變化的資料,其實並不適合快取,一方面會增加系統的複雜性(快取的更新,快取髒資料),另一方面也給系統帶來一定的不穩定性(快取系統的維護)。
但一些極端情況下,你需要將一些會變動的資料進行快取,比如想要頁面顯示準實時的庫存數,或者其他一些特殊業務場景。這時候你需要保證快取不能(一直)有髒資料,這就需要再深入討論一下。
快取的利與弊
我們到底該不該上快取的,這其實也是個trade-off的問題。
上快取的優點:
- 能夠縮短服務的響應時間,給使用者帶來更好的體驗。
- 能夠增大系統的吞吐量,依然能夠提升使用者體驗。
- 減輕資料庫的壓力,防止高峰期資料庫被壓垮,導致整個線上服務BOOM!
上了快取,也會引入很多額外的問題:
- 快取有多種選型,是記憶體快取,memcached還是redis,你是否都熟悉,如果不熟悉,無疑增加了維護的難度(本來是個純潔的資料庫系統)。
- 快取系統也要考慮分散式,比如redis的分散式快取還會有很多坑,無疑增加了系統的複雜性。
- 在特殊場景下,如果對快取的準確性有非常高的要求,就必須考慮快取和資料庫的一致性問題。
本文想要重點討論的,就是快取和資料庫的一致性問題,客觀且往下看。
快取和資料庫雙寫一致性
說了這麼多快取的必要性,那麼使用快取是不是就是一個很簡單的事情了呢,我之前也一直是這麼覺得的,直到遇到了需要快取與資料庫保持強一致的場景,才知道讓資料庫資料和快取資料保持一致性是一門很高深的學問。
從遠古的硬體快取,作業系統快取開始,快取就是一門獨特的學問。這個問題也被業界探討了非常久,爭論至今。我翻閱了很多資料,發現其實這是一個權衡的問題。值得好好講講。
以下的討論會引入幾方觀點,我會跟著觀點來寫程式碼驗證所提到的問題。
不使用更新快取而是刪除快取
大部分觀點認為,做快取不應該是去更新快取,而是應該刪除快取,然後由下個請求去去快取,發現不存在後再讀取資料庫,寫入快取。
《分散式之資料庫和快取雙寫一致性方案解析》孤獨煙:
原因一:執行緒安全形度
同時有請求A和請求B進行更新操作,那麼會出現
(1)執行緒A更新了資料庫
(2)執行緒B更新了資料庫
(3)執行緒B更新了快取
(4)執行緒A更新了快取
這就出現請求A更新快取應該比請求B更新快取早才對,但是因為網路等原因,B卻比A更早更新了快取。這就導致了髒資料,因此不考慮。
原因二:業務場景角度
有如下兩點:
(1)如果你是一個寫資料庫場景比較多,而讀資料場景比較少的業務需求,採用這種方案就會導致,資料壓根還沒讀到,快取就被頻繁的更新,浪費效能。
(2)如果你寫入資料庫的值,並不是直接寫入快取的,而是要經過一系列複雜的計算再寫入快取。那麼,每次寫入資料庫後,都再次計算寫入快取的值,無疑是浪費效能的。顯然,刪除快取更為適合。
其實如果業務非常簡單,只是去資料庫拿一個值,寫入快取,那麼更新快取也是可以的。但是,淘汰快取操作簡單,並且帶來的副作用只是增加了一次cache miss,建議作為通用的處理方式。
先刪除快取,還是先運算元據庫?
那麼問題就來了,我們是先刪除快取,然後再更新資料庫,還是先更新資料庫,再刪快取呢?
先來看看大佬們怎麼說。
《【58沈劍架構系列】快取架構設計細節二三事》58沈劍:
對於一個不能保證事務性的操作,一定涉及“哪個任務先做,哪個任務後做”的問題,解決這個問題的方向是:如果出現不一致,誰先做對業務的影響較小,就誰先執行。
假設先淘汰快取,再寫資料庫:第一步淘汰快取成功,第二步寫資料庫失敗,則只會引發一次Cache miss。
假設先寫資料庫,再淘汰快取:第一步寫資料庫操作成功,第二步淘汰快取失敗,則會出現DB中是新資料,Cache中是舊資料,資料不一致。
沈劍老師說的沒有問題,不過沒完全考慮好併發請求時的資料髒讀問題,讓我們再來看看孤獨煙老師《分散式之資料庫和快取雙寫一致性方案解析》:
先刪快取,再更新資料庫
該方案會導致請求資料不一致
同時有一個請求A進行更新操作,另一個請求B進行查詢操作。那麼會出現如下情形:
(1)請求A進行寫操作,刪除快取
(2)請求B查詢發現快取不存在
(3)請求B去資料庫查詢得到舊值
(4)請求B將舊值寫入快取
(5)請求A將新值寫入資料庫
上述情況就會導致不一致的情形出現。而且,如果不採用給快取設定過期時間策略,該資料永遠都是髒資料。
所以先刪快取,再更新資料庫並不是一勞永逸的解決方案,再看看先更新資料庫,再刪快取
先更新資料庫,再刪快取這種情況不存在併發問題麼?
不是的。假設這會有兩個請求,一個請求A做查詢操作,一個請求B做更新操作,那麼會有如下情形產生
(1)快取剛好失效
(2)請求A查詢資料庫,得一箇舊值
(3)請求B將新值寫入資料庫
(4)請求B刪除快取
(5)請求A將查到的舊值寫入快取
ok,如果發生上述情況,確實是會發生髒資料。
然而,發生這種情況的概率又有多少呢?
發生上述情況有一個先天性條件,就是步驟(3)的寫資料庫操作比步驟(2)的讀資料庫操作耗時更短,才有可能使得步驟(4)先於步驟(5)。可是,大家想想,資料庫的讀操作的速度遠快於寫操作的(不然做讀寫分離幹嘛,做讀寫分離的意義就是因為讀操作比較快,耗資源少),因此步驟(3)耗時比步驟(2)更短,這一情形很難出現。
先更新資料庫,再刪快取依然會有問題,不過,問題出現的可能性會因為上面說的原因,變得比較低!
所以,如果你想實現基礎的快取資料庫雙寫一致的邏輯,那麼在大多數情況下,在不想做過多設計,增加太大工作量的情況下,請先更新資料庫,再刪快取!
我一定要資料庫和快取資料一致怎麼辦
那麼,如果我tm非要保證絕對一致性怎麼辦,先給出結論:
沒有辦法做到絕對的一致性,這是由CAP理論決定的,快取系統適用的場景就是非強一致性的場景,所以它屬於CAP中的AP。
所以,我們得委曲求全,可以去做到BASE理論中說的最終一致性。
最終一致性強調的是系統中所有的資料副本,在經過一段時間的同步後,最終能夠達到一個一致的狀態。因此,最終一致性的本質是需要系統保證最終資料能夠達到一致,而不需要實時保證系統資料的強一致性
大佬們給出了到達最終一致性的解決思路,主要是針對上面兩種雙寫策略(先刪快取,再更新資料庫/先更新資料庫,再刪快取)導致的髒資料問題,進行相應的處理,來保證最終一致性。
延時雙刪
問:先刪除快取,再更新資料庫中避免髒資料?
答案:採用延時雙刪策略。
上文我們提到,在先刪除快取,再更新資料庫的情況下,如果不採用給快取設定過期時間策略,該資料永遠都是髒資料。
那麼延時雙刪怎麼解決這個問題呢?
(1)先淘汰快取
(2)再寫資料庫(這兩步和原來一樣)
(3)休眠1秒,再次淘汰快取
這麼做,可以將1秒內所造成的快取髒資料,再次刪除。
那麼,這個1秒怎麼確定的,具體該休眠多久呢?
針對上面的情形,讀者應該自行評估自己的專案的讀資料業務邏輯的耗時。然後寫資料的休眠時間則在讀資料業務邏輯的耗時基礎上,加幾百ms即可。這麼做的目的,就是確保讀請求結束,寫請求可以刪除讀請求造成的快取髒資料。
如果你用了mysql的讀寫分離架構怎麼辦?
ok,在這種情況下,造成資料不一致的原因如下,還是兩個請求,一個請求A進行更新操作,另一個請求B進行查詢操作。
(1)請求A進行寫操作,刪除快取
(2)請求A將資料寫入資料庫了,
(3)請求B查詢快取發現,快取沒有值
(4)請求B去從庫查詢,這時,還沒有完成主從同步,因此查詢到的是舊值
(5)請求B將舊值寫入快取
(6)資料庫完成主從同步,從庫變為新值
上述情形,就是資料不一致的原因。還是使用雙刪延時策略。只是,睡眠時間修改為在主從同步的延時時間基礎上,加幾百ms。
採用這種同步淘汰策略,吞吐量降低怎麼辦?
ok,那就將第二次刪除作為非同步的。自己起一個執行緒,非同步刪除。這樣,寫的請求就不用沉睡一段時間後了,再返回。這麼做,加大吞吐量。
所以在先刪除快取,再更新資料庫的情況下,可以使用延時雙刪的策略,來保證髒資料只會存活一段時間,就會被準確的資料覆蓋。
在先更新資料庫,再刪快取的情況下,快取出現髒資料的情況雖然可能性極小,但也會出現。我們依然可以用延時雙刪策略,在請求A對快取寫入了髒的舊值之後,再次刪除快取。來保證去掉髒快取。
刪快取失敗了怎麼辦:重試機制
看似問題都已經解決了,但其實,還有一個問題沒有考慮到,那就是刪除快取的操作,失敗了怎麼辦?比如延時雙刪的時候,第二次快取刪除失敗了,那不還是沒有清除髒資料嗎?
解決方案就是再加上一個重試機制,保證刪除快取成功。
參考孤獨煙老師給的方案圖:
方案一:
流程如下所示
(1)更新資料庫資料;
(2)快取因為種種問題刪除失敗
(3)將需要刪除的key傳送至訊息佇列
(4)自己消費訊息,獲得需要刪除的key
(5)繼續重試刪除操作,直到成功
然而,該方案有一個缺點,對業務線程式碼造成大量的侵入。於是有了方案二,在方案二中,啟動一個訂閱程式去訂閱資料庫的binlog,獲得需要操作的資料。在應用程式中,另起一段程式,獲得這個訂閱程式傳來的資訊,進行刪除快取操作。
方案二:
流程如下圖所示:
(1)更新資料庫資料
(2)資料庫會將操作資訊寫入binlog日誌當中
(3)訂閱程式提取出所需要的資料以及key
(4)另起一段非業務程式碼,獲得該資訊
(5)嘗試刪除快取操作,發現刪除失敗
(6)將這些資訊傳送至訊息佇列
(7)重新從訊息佇列中獲得該資料,重試操作。
而讀取binlog的中介軟體,可以採用阿里開源的canal
好了,到這裡我們已經把快取雙寫一致性的思路徹底梳理了一遍,下面就是我對這幾種思路徒手寫的實戰程式碼,方便有需要的朋友參考。
實戰:先刪除快取,再更新資料庫
終於到了實戰,我們在秒殺專案的程式碼上增加介面:先刪除快取,再更新資料庫
OrderController中新增:
/**
* 下單介面:先刪除快取,再更新資料庫
* @param sid
* @return
*/
@RequestMapping("/createOrderWithCacheV1/{sid}")
@ResponseBody
public String createOrderWithCacheV1(@PathVariable int sid) {
int count = 0;
try {
// 刪除庫存快取
stockService.delStockCountCache(sid);
// 完成扣庫存下單事務
orderService.createPessimisticOrder(sid);
} catch (Exception e) {
LOGGER.error("購買失敗:[{}]", e.getMessage());
return "購買失敗,庫存不足";
}
LOGGER.info("購買成功,剩餘庫存為: [{}]", count);
return String.format("購買成功,剩餘庫存為:%d", count);
}
stockService中新增:
@Override
public void delStockCountCache(int id) {
String hashKey = CacheKey.STOCK_COUNT.getKey() + "_" + id;
stringRedisTemplate.delete(hashKey);
LOGGER.info("刪除商品id:[{}] 快取", id);
}
其他涉及的程式碼都在之前三篇文章中有介紹,並且可以直接去Github拿到專案原始碼,就不在這裡重複貼了。
實戰:先更新資料庫,再刪快取
如果是先更新資料庫,再刪快取,那麼程式碼只是在業務順序上顛倒了一下,這裡就只貼OrderController中新增:
/**
* 下單介面:先更新資料庫,再刪快取
* @param sid
* @return
*/
@RequestMapping("/createOrderWithCacheV2/{sid}")
@ResponseBody
public String createOrderWithCacheV2(@PathVariable int sid) {
int count = 0;
try {
// 完成扣庫存下單事務
orderService.createPessimisticOrder(sid);
// 刪除庫存快取
stockService.delStockCountCache(sid);
} catch (Exception e) {
LOGGER.error("購買失敗:[{}]", e.getMessage());
return "購買失敗,庫存不足";
}
LOGGER.info("購買成功,剩餘庫存為: [{}]", count);
return String.format("購買成功,剩餘庫存為:%d", count);
}
實戰:快取延時雙刪
如何做延時雙刪呢,最好的方法是開設一個執行緒池,線上程中刪除key,而不是使用Thread.sleep進行等待,這樣會阻塞使用者的請求。
更新前先刪除快取,然後更新資料,再延時刪除快取。
OrderController中新增介面:
// 延時時間:預估讀資料庫資料業務邏輯的耗時,用來做快取再刪除
private static final int DELAY_MILLSECONDS = 1000;
/**
* 下單介面:先刪除快取,再更新資料庫,快取延時雙刪
* @param sid
* @return
*/
@RequestMapping("/createOrderWithCacheV3/{sid}")
@ResponseBody
public String createOrderWithCacheV3(@PathVariable int sid) {
int count;
try {
// 刪除庫存快取
stockService.delStockCountCache(sid);
// 完成扣庫存下單事務
count = orderService.createPessimisticOrder(sid);
// 延時指定時間後再次刪除快取
cachedThreadPool.execute(new delCacheByThread(sid));
} catch (Exception e) {
LOGGER.error("購買失敗:[{}]", e.getMessage());
return "購買失敗,庫存不足";
}
LOGGER.info("購買成功,剩餘庫存為: [{}]", count);
return String.format("購買成功,剩餘庫存為:%d", count);
}
OrderController中新增執行緒池:
// 延時雙刪執行緒池
private static ExecutorService cachedThreadPool = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>());
/**
* 快取再刪除執行緒
*/
private class delCacheByThread implements Runnable {
private int sid;
public delCacheByThread(int sid) {
this.sid = sid;
}
public void run() {
try {
LOGGER.info("非同步執行快取再刪除,商品id:[{}], 首先休眠:[{}] 毫秒", sid, DELAY_MILLSECONDS);
Thread.sleep(DELAY_MILLSECONDS);
stockService.delStockCountCache(sid);
LOGGER.info("再次刪除商品id:[{}] 快取", sid);
} catch (Exception e) {
LOGGER.error("delCacheByThread執行出錯", e);
}
}
}
來試驗一下,請求介面createOrderWithCacheV3:
日誌中,做到了兩次刪除:
實戰:刪除快取重試機制
上文提到了,要解決刪除失敗的問題,需要用到訊息佇列,進行刪除操作的重試。這裡我們為了達到效果,接入了RabbitMq,並且需要在介面中寫傳送訊息,並且需要消費者常駐來消費訊息。Spring整合RabbitMq還是比較簡單的,我把簡單的整合程式碼也貼出來。
pom.xml新增RabbitMq的依賴:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
寫一個RabbitMqConfig:
@Configuration
public class RabbitMqConfig {
@Bean
public Queue delCacheQueue() {
return new Queue("delCache");
}
}
新增一個消費者:
@Component
@RabbitListener(queues = "delCache")
public class DelCacheReceiver {
private static final Logger LOGGER = LoggerFactory.getLogger(DelCacheReceiver.class);
@Autowired
private StockService stockService;
@RabbitHandler
public void process(String message) {
LOGGER.info("DelCacheReceiver收到訊息: " + message);
LOGGER.info("DelCacheReceiver開始刪除快取: " + message);
stockService.delStockCountCache(Integer.parseInt(message));
}
}
OrderController中新增介面:
/**
* 下單介面:先更新資料庫,再刪快取,刪除快取重試機制
* @param sid
* @return
*/
@RequestMapping("/createOrderWithCacheV4/{sid}")
@ResponseBody
public String createOrderWithCacheV4(@PathVariable int sid) {
int count;
try {
// 完成扣庫存下單事務
count = orderService.createPessimisticOrder(sid);
// 刪除庫存快取
stockService.delStockCountCache(sid);
// 延時指定時間後再次刪除快取
// cachedThreadPool.execute(new delCacheByThread(sid));
// 假設上述再次刪除快取沒成功,通知訊息佇列進行刪除快取
sendDelCache(String.valueOf(sid));
} catch (Exception e) {
LOGGER.error("購買失敗:[{}]", e.getMessage());
return "購買失敗,庫存不足";
}
LOGGER.info("購買成功,剩餘庫存為: [{}]", count);
return String.format("購買成功,剩餘庫存為:%d", count);
}
訪問createOrderWithCacheV4:
可以看到,我們先完成了下單,然後刪除了快取,並且假設延遲刪除快取失敗了,傳送給訊息佇列重試的訊息,訊息佇列收到訊息後再去刪除快取。
實戰:讀取binlog非同步刪除快取
我們需要用到阿里開源的canal來讀取binlog進行快取的非同步刪除。
不過很蛋疼的是,這次文章的工作量實在有點太大了,連續寫程式碼和整理文字身體有點吃不消了,不知道你們有沒有學累。我準備把canal之後單開一個文章寫,可能就是第五篇,也可能是單開一個canal的文章。我得先休息會,這裡就留一個坑把。
擴充套件閱讀
更新快取的的Design Pattern有四種:Cache aside, Read through, Write through, Write behind caching,這裡有陳皓的總結文章可以進行學習。
https://coolshell.cn/articles/17416.html
小結
引用陳浩《快取更新的套路》最後的總結語作為小結:
分散式系統裡要麼通過2PC或是Paxos協議保證一致性,要麼就是拼命的降低併發時髒資料的概率
快取系統適用的場景就是非強一致性的場景,所以它屬於CAP中的AP,BASE理論。
異構資料庫本來就沒辦法強一致,只是儘可能減少時間視窗,達到最終一致性。
還有別忘了設定過期時間,這是個兜底方案
結束語
本文總結了秒殺系統中關於快取資料的思考和實現,並探討了快取資料庫雙寫一致性問題。
可以總結為如下幾點:
- 對於讀多寫少的資料,請使用快取。
- 為了保持一致性,會導致系統吞吐量的下降。
- 為了保持一致性,會導致業務程式碼邏輯複雜。
- 快取做不到絕對一致性,但可以做到最終一致性。
- 對於需要保證快取資料庫資料一致的情況,請儘量考慮對一致性到底有多高要求,選定合適的方案,避免過度設計。
作者水平有限,寫文章過程中難免出現錯誤和疏漏,請理性討論與指正。
希望大家多多支援我的公主號:後端技術漫談
參考
- https://cloud.tencent.com/developer/article/1574827
- https://www.jianshu.com/p/2936a5c65e6b
- https://www.cnblogs.com/rjzheng/p/9041659.html
- https://www.cnblogs.com/codeon/p/8287563.html
- https://www.jianshu.com/p/0275ecca2438
- https://www.jianshu.com/p/dc1e5091a0d8
- https://coolshell.cn/articles/17416.html
關注我
我是一名後端開發工程師。
主要關注後端開發,資料安全,物聯網,邊緣計算方向,歡迎交流。
各大平臺都可以找到我
- 微信公眾號:後端技術漫談
- Github:@qqxx6661
- CSDN:@Rude3knife
- 知乎:@後端技術漫談
- 簡書:@蠻三刀把刀
- 掘金:@蠻三刀把刀
原創部落格主要內容
- 後端開發技術
- Java面試知識點
- 設計模式/資料結構
- LeetCode/劍指offer 演算法題解析
- SpringBoot/SpringCloud入門實戰系列
- 資料分析/資料爬蟲
- 逸聞趣事/好書分享/個人生活
個人公眾號:後端技術漫談
如果文章對你有幫助,不妨收藏,轉發,在看起來~