分散式之資料庫和快取雙寫一致性方案解析
引言
為什麼寫這篇文章?
首先,快取由於其高併發和高效能的特性,已經在專案中被廣泛使用。在讀取快取方面,大家沒啥疑問,都是按照下圖的流程來進行業務操作。
但是在更新快取方面,對於更新完資料庫,是更新快取呢,還是刪除快取。又或者是先刪除快取,再更新資料庫,其實大家存在很大的爭議。目前沒有一篇全面的部落格,對這幾種方案進行解析。於是博主戰戰兢兢,頂著被大家噴的風險,寫了這篇文章。
文章結構
本文由以下三個部分組成
1、講解快取更新策略
2、對每種策略進行缺點分析
3、針對缺點給出改進方案
正文
先做一個說明,從理論上來說,給快取設定過期時間,是保證最終一致性的解決方案。這種方案下,我們可以對存入快取的資料設定過期時間,所有的寫操作以資料庫為準,對快取操作只是盡最大努力即可。也就是說如果資料庫寫成功,快取更新失敗,那麼只要到達過期時間,則後面的讀請求自然會從資料庫中讀取新值然後回填快取。因此,接下來討論的思路不依賴於給快取設定過期時間這個方案。
在這裡,我們討論 三種 更新策略:
先更新資料庫,再更新快取
先刪除快取,再更新資料庫
先更新資料庫,再刪除快取
應該沒人問我,為什麼沒有先更新快取,再更新資料庫這種策略。
(1)先更新資料庫,再更新快取
這套方案,大家是普遍反對的。為什麼呢?有如下兩點原因。
原因一(執行緒安全形度
同時有請求A和請求B進行更新操作,那麼會出現
(1)執行緒A更新了資料庫
(2)執行緒B更新了資料庫
(3)執行緒B更新了快取
(4)執行緒A更新了快取
這就出現請求A更新快取應該比請求B更新快取早才對,但是因為網路等原因,B卻比A更早更新了快取。這就導致了髒資料,因此不考慮。
原因二(業務場景角度)
有如下兩點:
(1)如果你是一個寫資料庫場景比較多,而讀資料場景比較少的業務需求,採用這種方案就會導致,資料壓根還沒讀到,快取就被頻繁的更新,浪費效能。
(2)如果你寫入資料庫的值,並不是直接寫入快取的,而是要經過一系列複雜的計算再寫入快取。那麼,每次寫入資料庫後,都再次計算寫入快取的值,無疑是浪費效能的。顯然,刪除快取更為適合。
接下來討論的就是爭議最大的,先刪快取,再更新資料庫。還是先更新資料庫,再刪快取的問題。
(2)先刪快取,再更新資料庫
該方案會導致不一致的原因是。同時有一個請求A進行更新操作,另一個請求B進行查詢操作。那麼會出現如下情形:
(1)請求A進行寫操作,刪除快取
(2)請求B查詢發現快取不存在
(3)請求B去資料庫查詢得到舊值
(4)請求B將舊值寫入快取
(5)請求A將新值寫入資料庫
上述情況就會導致不一致的情形出現。而且,如果不採用給快取設定過期時間策略,該資料永遠都是髒資料。
那麼, 如何解決呢?採用延時雙刪策略
虛擬碼如下
publicvoidwrite(Stringkey,Objectdata){ redis.delKey(key); db.updateData(data); Thread.sleep(1000); redis.delKey(key); }
轉化為中文描述就是
(1)先淘汰快取
(2)再寫資料庫(這兩步和原來一樣)
(3)休眠1秒,再次淘汰快取
這麼做,可以將1秒內所造成的快取髒資料,再次刪除。
那麼,這個1秒怎麼確定的,具體該休眠多久呢?
針對上面的情形,讀者應該自行評估自己的專案的讀資料業務邏輯的耗時。然後寫資料的休眠時間則在讀資料業務邏輯的耗時基礎上,加幾百ms即可。這麼做的目的,就是確保讀請求結束,寫請求可以刪除讀請求造成的快取髒資料。
如果你用了mysql的讀寫分離架構怎麼辦?
ok,在這種情況下,造成資料不一致的原因如下,還是兩個請求,一個請求A進行更新操作,另一個請求B進行查詢操作。
(1)請求A進行寫操作,刪除快取
(2)請求A將資料寫入資料庫了,
(3)請求B查詢快取發現,快取沒有值
(4)請求B去從庫查詢,這時,還沒有完成主從同步,因此查詢到的是舊值
(5)請求B將舊值寫入快取
(6)資料庫完成主從同步,從庫變為新值
上述情形,就是資料不一致的原因。還是使用雙刪延時策略。只是,睡眠時間修改為在主從同步的延時時間基礎上,加幾百ms。
採用這種同步淘汰策略,吞吐量降低怎麼辦?
ok,那就將第二次刪除作為非同步的。自己起一個執行緒,非同步刪除。這樣,寫的請求就不用沉睡一段時間後了,再返回。這麼做,加大吞吐量。
第二次刪除,如果刪除失敗怎麼辦?
這是個非常好的問題,因為第二次刪除失敗,就會出現如下情形。還是有兩個請求,一個請求A進行更新操作,另一個請求B進行查詢操作,為了方便,假設是單庫:
(1)請求A進行寫操作,刪除快取
(2)請求B查詢發現快取不存在
(3)請求B去資料庫查詢得到舊值
(4)請求B將舊值寫入快取
(5)請求A將新值寫入資料庫
(6)請求A試圖去刪除請求B寫入對快取值,結果失敗了。
ok,這也就是說。如果第二次刪除快取失敗,會再次出現快取和資料庫不一致的問題。
如何解決呢?
具體解決方案,且看博主對第(3)種更新策略的解析。
(3)先更新資料庫,再刪快取
首先,先說一下。老外提出了一個快取更新套路,名為《Cache-Aside pattern》。其中就指出
失效 :應用程式先從cache取資料,沒有得到,則從資料庫中取資料,成功後,放到快取中。
命中 :應用程式從cache中取資料,取到後返回。
更新 :先把資料存到資料庫中,成功後,再讓快取失效。
另外,知名社交網站facebook也在論文《Scaling Memcache at Facebook》中提出,他們用的也是先更新資料庫,再刪快取的策略。
這種情況不存在併發問題麼?
不是的。假設這會有兩個請求,一個請求A做查詢操作,一個請求B做更新操作,那麼會有如下情形產生
(1)快取剛好失效
(2)請求A查詢資料庫,得一箇舊值
(3)請求B將新值寫入資料庫
(4)請求B刪除快取
(5)請求A將查到的舊值寫入快取
ok,如果發生上述情況,確實是會發生髒資料。
然而,發生這種情況的機率又有多少呢?
發生上述情況有一個先天性條件,就是步驟(3)的寫資料庫操作比步驟(2)的讀資料庫操作耗時更短,才有可能使得步驟(4)先於步驟(5)。可是,大家想想,資料庫的讀操作的速度遠快於寫操作的(不然做讀寫分離幹嘛,做讀寫分離的意義就是因為讀操作比較快,耗資源少),因此步驟(3)耗時比步驟(2)更短,這一情形很難出現。
假設,有人非要抬槓,有強迫症,一定要解決怎麼辦?
如何解決上述併發問題?
首先,給快取設有效時間是一種方案。其次,採用策略(2)裡給出的非同步延時刪除策略,保證讀請求完成以後,再進行刪除操作。
還有其他造成不一致的原因麼?
有的,這也是快取更新策略(2)和快取更新策略(3)都存在的一個問題,如果刪快取失敗了怎麼辦,那不是會有不一致的情況出現麼。比如一個寫資料請求,然後寫入資料庫了,刪快取失敗了,這會就出現不一致的情況了。這也是快取更新策略(2)裡留下的最後一個疑問。
如何解決?
提供一個保障的重試機制即可,這裡給出兩套方案。
方案一 :
如下圖所示
流程如下所示
(1)更新資料庫資料;
(2)快取因為種種問題刪除失敗
(3)將需要刪除的key傳送至訊息佇列
(4)自己消費訊息,獲得需要刪除的key
(5)繼續重試刪除操作,直到成功
然而,該方案有一個缺點,對業務線程式碼造成大量的侵入。於是有了方案二,在方案二中,啟動一個訂閱程式去訂閱資料庫的binlog,獲得需要操作的資料。在應用程式中,另起一段程式,獲得這個訂閱程式傳來的資訊,進行刪除快取操作。
方案二 :
流程如下圖所示:
(1)更新資料庫資料
(2)資料庫會將操作資訊寫入binlog日誌當中
(3)訂閱程式提取出所需要的資料以及key
(4)另起一段非業務程式碼,獲得該資訊
(5)嘗試刪除快取操作,發現刪除失敗
(6)將這些資訊傳送至訊息佇列
(7)重新從訊息佇列中獲得該資料,重試操作。
備註說明: 上述的訂閱binlog程式在mysql中有現成的中介軟體叫canal,可以完成訂閱binlog日誌的功能。至於oracle中,博主目前不知道有沒有現成中介軟體可以使用。另外,重試機制,博主是採用的是訊息佇列的方式。如果對一致性要求不是很高,直接在程式中另起一個執行緒,每隔一段時間去重試即可,這些大家可以靈活自由發揮,只是提供一個思路。
總結
本文其實是對目前網際網路中已有的一致性方案,進行了一個總結。對於先刪快取,再更新資料庫的更新策略,還有方案提出維護一個記憶體佇列的方式,小編看了一下,覺得實現異常複雜,沒有必要,因此沒有必要在文中給出。最後,希望大家有所收穫。
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69912582/viewspace-2637910/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 深入理解分散式之資料庫和快取雙寫一致性方案解析分散式資料庫快取
- 分散式之資料庫和快取雙寫一致性方案(二)分散式資料庫快取
- 分散式快取--快取與資料庫一致性方案分散式快取資料庫
- 資料庫和快取雙寫一致性方案總結分析資料庫快取
- 資料庫與快取雙寫一致性資料庫快取
- 快取與資料庫的雙寫一致性快取資料庫
- 快取淘汰、快取穿透、快取擊穿、快取雪崩、資料庫快取雙寫一致性快取穿透資料庫
- 快取與資料庫雙寫一致性 深度分析快取資料庫
- 如何保證快取與資料庫的雙寫一致性?快取資料庫
- 快取與資料庫雙寫一致性幾種策略分析快取資料庫
- 如何保證快取(redis)與資料庫的雙寫一致性快取Redis資料庫
- 分散式快取方案分散式快取
- 分散式快取--快取與資料庫強一致場景下的方案分散式快取資料庫
- 資料庫與快取資料一致性解決方案資料庫快取
- 阿里面試題:如何保證快取與資料庫的雙寫一致性?阿里面試題快取資料庫
- 聊聊本地快取和分散式快取快取分散式
- 面試重災區:怎麼保證快取與資料庫的雙寫一致性?面試快取資料庫
- 快取與資料庫雙寫,不一致問題及解決方案快取資料庫
- 如何保證mongodb和資料庫雙寫資料一致性?MongoDB資料庫
- 系統快取全解析7:第三方分散式快取解決方案 Memcached和Cacheman快取分散式
- 快取與資料庫一致性快取資料庫
- 【轉載】分散式快取能否作為NoSQL資料庫?分散式快取SQL資料庫
- 用Java寫一個分散式快取——快取管理Java分散式快取
- 分散式之快取擊穿分散式快取
- 分散式資料快取中的一致性雜湊演算法分散式快取演算法
- 資料庫和快取的一致性如何保證資料庫快取
- 如何保證快取和資料庫的一致性?快取資料庫
- [Redis] 02-快取和資料庫資料一致性問題Redis快取資料庫
- 快取與資料庫的一致性快取資料庫
- 分散式鎖的3種實現(資料庫、快取、Zookeeper)分散式資料庫快取
- 趣說 | 資料庫和快取如何保證一致性?資料庫快取
- Redis雙寫一致性與快取更新策略Redis快取
- 分散式快取系統之Memcached分散式快取
- Redis快取穿透、擊穿、雪崩,資料庫與快取一致性Redis快取穿透資料庫
- 分散式快取分散式快取
- 解析分散式系統的快取設計分散式快取
- 深入分析與解決方案:快取與資料庫雙寫不一致問題快取資料庫
- 應對分散式快取當機的方案分散式快取