gRPC負載均衡(自定義負載均衡策略)

煙花易冷人憔悴發表於2020-05-20

前言

上篇文章介紹瞭如何實現gRPC負載均衡,但目前官方只提供了pick_firstround_robin兩種負載均衡策略,輪詢法round_robin不能滿足因伺服器配置不同而承擔不同負載量,這篇文章將介紹如何實現自定義負載均衡策略--加權隨機法

加權隨機法可以根據伺服器的處理能力而分配不同的權重,從而實現處理能力高的伺服器可承擔更多的請求,處理能力低的伺服器少承擔請求。

自定義負載均衡策略

gRPC提供了V2PickerBuilderV2Picker介面讓我們實現自己的負載均衡策略。

type V2PickerBuilder interface {
	Build(info PickerBuildInfo) balancer.V2Picker
}

V2PickerBuilder介面:建立V2版本的子連線選擇器。

Build方法:返回一個V2選擇器,將用於gRPC選擇子連線。

type V2Picker interface {
	Pick(info PickInfo) (PickResult, error)
}

V2Picker 介面:用於gRPC選擇子連線去傳送請求。
Pick方法:子連線選擇

問題來了,我們需要把伺服器地址的權重新增進去,但是地址resolver.Address並沒有提供權重的屬性。官方給的答覆是:把權重儲存到地址的後設資料metadata中。

// attributeKey is the type used as the key to store AddrInfo in the Attributes
// field of resolver.Address.
type attributeKey struct{}

// AddrInfo will be stored inside Address metadata in order to use weighted balancer.
type AddrInfo struct {
	Weight int
}

// SetAddrInfo returns a copy of addr in which the Attributes field is updated
// with addrInfo.
func SetAddrInfo(addr resolver.Address, addrInfo AddrInfo) resolver.Address {
	addr.Attributes = attributes.New()
	addr.Attributes = addr.Attributes.WithValues(attributeKey{}, addrInfo)
	return addr
}

// GetAddrInfo returns the AddrInfo stored in the Attributes fields of addr.
func GetAddrInfo(addr resolver.Address) AddrInfo {
	v := addr.Attributes.Value(attributeKey{})
	ai, _ := v.(AddrInfo)
	return ai
}

定義AddrInfo結構體並新增權重Weight屬性,Set方法把Weight儲存到resolver.Address中,Get方法從resolver.Address獲取Weight

解決權重儲存問題後,接下來我們實現加權隨機法負載均衡策略。

首先實現V2PickerBuilder介面,返回子連線選擇器。

func (*rrPickerBuilder) Build(info base.PickerBuildInfo) balancer.V2Picker {
	grpclog.Infof("weightPicker: newPicker called with info: %v", info)
	if len(info.ReadySCs) == 0 {
		return base.NewErrPickerV2(balancer.ErrNoSubConnAvailable)
	}
	var scs []balancer.SubConn
	for subConn, addr := range info.ReadySCs {
		node := GetAddrInfo(addr.Address)
		if node.Weight <= 0 {
			node.Weight = minWeight
		} else if node.Weight > 5 {
			node.Weight = maxWeight
		}
		for i := 0; i < node.Weight; i++ {
			scs = append(scs, subConn)
		}
	}
	return &rrPicker{
		subConns: scs,
	}
}

加權隨機法中,我使用空間換時間的方式,把權重轉成地址個數(例如addr1的權重是3,那麼新增3個子連線到切片中;addr2權重為1,則新增1個子連線;選擇子連線時候,按子連線切片長度生成隨機數,以隨機數作為下標就是選中的子連線),避免重複計算權重。考慮到記憶體佔用,權重定義從15權重。

接下來實現子連線的選擇,獲取隨機數,選擇子連線

type rrPicker struct {
	subConns []balancer.SubConn
	mu sync.Mutex
}

func (p *rrPicker) Pick(balancer.PickInfo) (balancer.PickResult, error) {
	p.mu.Lock()
	index := rand.Intn(len(p.subConns))
	sc := p.subConns[index]
	p.mu.Unlock()
	return balancer.PickResult{SubConn: sc}, nil
}

關鍵程式碼完成後,我們把加權隨機法負載均衡策略命名為weight,並註冊到gRPC的負載均衡策略中。

// Name is the name of weight balancer.
const Name = "weight"
// NewBuilder creates a new weight balancer builder.
func newBuilder() balancer.Builder {
	return base.NewBalancerBuilderV2(Name, &rrPickerBuilder{}, base.Config{HealthCheck: false})
}

func init() {
	balancer.Register(newBuilder())
}

完整程式碼weight.go

最後,我們只需要在服務端註冊服務時候附帶權重,然後客戶端在服務發現時把權重Setresolver.Address中,最後客戶端把負載論衡策略改成weight就完成了。

//SetServiceList 設定服務地址
func (s *ServiceDiscovery) SetServiceList(key, val string) {
	s.lock.Lock()
	defer s.lock.Unlock()
	//獲取服務地址
	addr := resolver.Address{Addr: strings.TrimPrefix(key, s.prefix)}
	//獲取服務地址權重
	nodeWeight, err := strconv.Atoi(val)
	if err != nil {
		//非數字字元預設權重為1
		nodeWeight = 1
	}
	//把服務地址權重儲存到resolver.Address的後設資料中
	addr = weight.SetAddrInfo(addr, weight.AddrInfo{Weight: nodeWeight})
	s.serverList[key] = addr
	s.cc.UpdateState(resolver.State{Addresses: s.getServices()})
	log.Println("put key :", key, "wieght:", val)
}

客戶端使用weight負載均衡策略

func main() {
	r := etcdv3.NewServiceDiscovery(EtcdEndpoints)
	resolver.Register(r)
	// 連線伺服器
	conn, err := grpc.Dial(
		fmt.Sprintf("%s:///%s", r.Scheme(), SerName),
		grpc.WithBalancerName("weight"),
		grpc.WithInsecure(),
	)
	if err != nil {
		log.Fatalf("net.Connect err: %v", err)
	}
	defer conn.Close()

執行效果:

執行服務1,權重為1

執行服務2,權重為4

執行客戶端

檢視前50次請求在服務1伺服器2的負載情況。服務1分配了9次請求,服務2分配了41次請求,接近權重比值。

斷開服務2,所有請求流向服務1

以權重為4,重啟服務2,請求以加權隨機法流向兩個伺服器

總結

本篇文章以加權隨機法為例,介紹瞭如何實現gRPC自定義負載均衡策略,以滿足我們的需求。

原始碼地址:https://github.com/Bingjian-Zhu/etcd-example

相關文章