80篇CVPR 2020論文分方向整理:目標檢測/影像分割/姿態估計等

数据派THU發表於2020-03-23

本文整理和分類80篇CVPR2020論文。

CVPR 2020在2月24日公佈了所有接受論文ID,從論文ID公佈以來,我們一直在對CVPR進行實時跟進,本文是對80篇CVPR 2020論文整理和分類,均有論文連結,部分含開原始碼,涵蓋的方向有:目標檢測、目標跟蹤、影像分割人臉識別姿態估計、三維點雲、影片分析、模型加速、GAN、OCR等方向,文首文末有論文合集打包下載,分享給大家學習。

目標檢測

1. Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection

論文地址:

https://arxiv.org/abs/1912.02424

程式碼:

https://github.com/sfzhang15/ATSS

2. Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector

論文地址:

https://arxiv.org/abs/1908.01998

80篇CVPR 2020論文分方向整理:目標檢測/影像分割/姿態估計等

影像分割

1. Semi-Supervised Semantic Image Segmentation with Self-correcting Networks

論文地址:

https://arxiv.org/abs/1811.07073

2. Deep Snake for Real-Time Instance Segmentation

論文地址:

https://arxiv.org/abs/2001.01629

3. CenterMask : Real-Time Anchor-Free Instance Segmentation

論文地址:

https://arxiv.org/abs/1911.06667

程式碼:

https://github.com/youngwanLEE/CenterMask

4. SketchGCN: Semantic Sketch Segmentation with Graph Convolutional Networks

論文地址:

https://arxiv.org/abs/2003.00678

5. PolarMask: Single Shot Instance Segmentation with Polar Representation

論文地址:

https://arxiv.org/abs/1909.13226

程式碼:

https://github.com/xieenze/PolarMask

80篇CVPR 2020論文分方向整理:目標檢測/影像分割/姿態估計等

6. xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3D Semantic Segmentation

論文地址:

https://arxiv.org/abs/1911.12676

7. BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation

論文地址:

https://arxiv.org/abs/2001.00309

人臉識別

1. Towards Universal Representation Learning for Deep Face Recognition

論文地址:

https://arxiv.org/abs/2002.11841

2. Suppressing Uncertainties for Large-Scale Facial Expression Recognition

論文地址:

https://arxiv.org/abs/2002.10392

程式碼:

https://github.com/kaiwang960112/Self-Cure-Network

3.Face X-ray for More General Face Forgery Detection

論文地址:

https://arxiv.org/pdf/1912.13458.pdf

80篇CVPR 2020論文分方向整理:目標檢測/影像分割/姿態估計等

目標跟蹤

1.ROAM: Recurrently Optimizing Tracking Model

論文地址:

https://arxiv.org/abs/1907.12006

三維點雲&重建

1. PF-Net: Point Fractal Network for 3D Point Cloud Completion

論文地址:

https://arxiv.org/abs/2003.00410

2. PointAugment: an Auto-Augmentation Framework for Point Cloud Classification

論文地址:

https://arxiv.org/abs/2002.10876

程式碼:

https://github.com/liruihui/PointAugment/

3.Learning multiview 3D point cloud registration

論文地址:

https://arxiv.org/abs/2001.05119

4. C-Flow: Conditional Generative Flow Models for Images and 3D Point Clouds

論文地址:

https://arxiv.org/abs/1912.07009

5. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds

論文地址:

https://arxiv.org/abs/1911.11236

80篇CVPR 2020論文分方向整理:目標檢測/影像分割/姿態估計等

6. Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes from a Single Image

論文地址:

https://arxiv.org/abs/2002.12212

7. Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion

論文地址:

https://arxiv.org/abs/2003.01456

8. In Perfect Shape: Certifiably Optimal 3D Shape Reconstruction from 2D Landmarks

論文地址:

https://arxiv.org/pdf/1911.11924.pdf

影像處理

1. Learning to Shade Hand-drawn Sketches

論文地址:

https://arxiv.org/abs/2002.11812

2.Single Image Reflection Removal through Cascaded Refinement

論文地址:

https://arxiv.org/abs/1911.06634

3.Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data

論文地址:

https://arxiv.org/abs/2002.11297

4. Deep Image Harmonization via Domain Verification

論文地址:

https://arxiv.org/abs/1911.13239

程式碼:

https://github.com/bcmi/Image_Harmonization_Datasets

5. RoutedFusion: Learning Real-time Depth Map Fusion

論文地址:

https://arxiv.org/pdf/2001.04388.pdf

影像分類

1. Self-training with Noisy Student improves ImageNet classification

論文地址:

https://arxiv.org/abs/1911.04252

2. Image Matching across Wide Baselines: From Paper to Practice

論文地址:

https://arxiv.org/abs/2003.01587

3. Towards Robust Image Classification Using Sequential Attention Models

論文地址:

https://arxiv.org/abs/1912.02184

姿態估計

1. VIBE: Video Inference for Human Body Pose and Shape Estimation

論文地址:

https://arxiv.org/abs/1912.05656

程式碼:

https://github.com/mkocabas/VIBE

2. Distribution-Aware Coordinate Representation for Human Pose Estimation

論文地址:

https://arxiv.org/abs/1910.06278

程式碼:

https://github.com/ilovepose/DarkPose

3. 4D Association Graph for Realtime Multi-person Motion Capture Using Multiple Video Cameras

論文地址:

https://arxiv.org/abs/2002.12625

4. Optimal least-squares solution to the hand-eye calibration problem

論文地址:

https://arxiv.org/abs/2002.10838

5. D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry

論文地址:

https://arxiv.org/abs/2003.01060

6. Multi-Modal Domain Adaptation for Fine-Grained Action Recognition

論文地址:

https://arxiv.org/abs/2001.09691

7. Distribution Aware Coordinate Representation for Human Pose Estimation

論文地址:

https://arxiv.org/abs/1910.06278

8. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation

論文地址:

https://arxiv.org/abs/1911.07524

9.PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF Pose Estimation

論文地址:

https://arxiv.org/abs/1911.04231

80篇CVPR 2020論文分方向整理:目標檢測/影像分割/姿態估計等

影片分析

1. Rethinking Zero-shot Video Classification: End-to-end Training for Realistic Applications

論文地址:

https://arxiv.org/abs/2003.01455

程式碼:

https://github.com/bbrattoli/ZeroShotVideoClassification

2. Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

論文地址:

https://arxiv.org/abs/2003.00387

3. Fine-grained Video-Text Retrieval with Hierarchical Graph Reasoning

論文地址:

https://arxiv.org/abs/2003.00392

4. Object Relational Graph with Teacher-Recommended Learning for Video Captioning

論文地址:

https://arxiv.org/abs/2002.11566

5. Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution

論文地址:

https://arxiv.org/abs/2002.11616

6. Blurry Video Frame Interpolation

論文地址:

https://arxiv.org/abs/2002.12259

7. Hierarchical Conditional Relation Networks for Video Question Answering

論文地址:

https://arxiv.org/abs/2002.10698

8. Action Modifiers:Learning from Adverbs in Instructional Video

論文地址:

https://arxiv.org/abs/1912.06617

OCR

1. ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network

論文地址:

https://arxiv.org/abs/2002.10200

程式碼:

https://github.com/YuliangLiu/bezier_curve_text_spotting,https://github.com/aim-uofa/adet

GAN

1. Your Local GAN: Designing Two Dimensional Local Attention Mechanisms for Generative Models

論文地址:

https://arxiv.org/abs/1911.12287

程式碼:

https://github.com/giannisdaras/ylg

2. MSG-GAN: Multi-Scale Gradient GAN for Stable Image Synthesis

論文地址:

https://arxiv.org/abs/1903.06048

3. Robust Design of Deep Neural Networks against Adversarial Attacks based on Lyapunov Theory

論文地址:

https://arxiv.org/abs/1911.04636

小樣本&零樣本

1. Improved Few-Shot Visual Classification

論文地址:

https://arxiv.org/pdf/1912.03432.pdf

2.Meta-Transfer Learning for Zero-Shot Super-Resolution

論文地址:

https://arxiv.org/abs/2002.12213

弱監督&無監督

1. Rethinking the Route Towards Weakly Supervised Object Localization

論文地址:

https://arxiv.org/abs/2002.11359

80篇CVPR 2020論文分方向整理:目標檢測/影像分割/姿態估計等

2. NestedVAE: Isolating Common Factors via Weak Supervision

論文地址:

https://arxiv.org/abs/2002.11576

3.Unsupervised Reinforcement Learning of Transferable Meta-Skills for Embodied Navigation

論文地址:

https://arxiv.org/abs/1911.07450

4.Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction

論文地址:

https://arxiv.org/abs/2003.01460

神經網路

1. Visual Commonsense R-CNN

論文地址:

https://arxiv.org/abs/2002.12204

2. GhostNet: More Features from Cheap Operations

論文地址:

https://arxiv.org/abs/1911.11907

程式碼:

https://github.com/iamhankai/ghostnet

3. Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral

論文地址:

https://arxiv.org/abs/2003.01826

模型加速

1. GPU-Accelerated Mobile Multi-view Style Transfer

論文地址:

https://arxiv.org/abs/2003.00706

視覺常識

1. What it Thinks is Important is Important: Robustness Transfers through Input Gradients

論文地址:

https://arxiv.org/abs/1912.05699

2.Attentive Context Normalization for Robust Permutation-Equivariant Learning

論文地址:

https://arxiv.org/abs/1907.02545

3. Bundle Adjustment on a Graph Processor

論文地址:

https://arxiv.org/abs/2003.03134

程式碼:

https://github.com/joeaortiz/gbp

4. Transferring Dense Pose to Proximal Animal Classes

論文地址:

https://arxiv.org/abs/2003.00080

5. Representations, Metrics and Statistics For Shape Analysis of Elastic Graphs

論文地址:

https://arxiv.org/abs/2003.00287

6. Learning in the Frequency Domain

論文地址:

https://arxiv.org/abs/2002.12416

7.Filter Grafting for Deep Neural Networks

論文地址:

https://arxiv.org/pdf/2001.05868.pdf

8.ClusterFit: Improving Generalization of Visual Representations

論文地址:

https://arxiv.org/abs/1912.03330

9.Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction

論文地址:

https://arxiv.org/abs/2002.11927

10.Auto-Encoding Twin-Bottleneck Hashing

論文地址:

https://arxiv.org/abs/2002.11930

11.Learning Representations by Predicting Bags of Visual Words

論文地址:

https://arxiv.org/abs/2002.12247

12.Holistically-Attracted Wireframe Parsing

論文地址:

https://arxiv.org/abs/2003.01663

13.A General and Adaptive Robust Loss Function

論文地址:

https://arxiv.org/abs/1701.03077

14.A Characteristic Function Approach to Deep Implicit Generative Modeling

論文地址:

https://arxiv.org/abs/1909.07425

15.AdderNet: Do We Really Need Multiplications in Deep Learning?

論文地址:

https://arxiv.org/pdf/1912.13200

16.12-in-1: Multi-Task Vision and Language Representation Learning

論文地址:

https://arxiv.org/abs/1912.02315

17.Making Better Mistakes: Leveraging Class Hierarchies with Deep Networks


論文地址:

https://arxiv.org/abs/1912.09393

18.CARS: Contunuous Evolution for Efficient Neural Architecture Search

論文地址:

https://arxiv.org/pdf/1909.04977.pdf

程式碼:

https://github.com/huawei-noah/CARS

19.Towards Learning a Generic Agent for Vision-and-Language Navigation via Pre-training

論文地址:

https://arxiv.org/abs/2002.10638

程式碼:

https://github.com/weituo12321/PREVALENT

校對:林亦霖

THU資料派
THU資料派

THU資料派"基於清華,放眼世界",以紮實的理工功底闖蕩“資料江湖”。釋出全球大資料資訊,定期組織線下活動,分享前沿產業動態。瞭解清華大資料,敬請關注姐妹號“資料派THU”。

相關文章