首先,通過blockchain.info檢視一筆交易的基本資料結構:
原始碼初窺
- 程式碼路徑: bitcoin/src/private
COutPut
/** An outpoint - a combination of a transaction hash and an index n into its vout
*
** 一個交易雜湊值與輸出下標的集合
*/
class COutPoint
{
public:
uint256 hash; //交易哈西
uint32_t n; //對應序列號
COutPoint(): n((uint32_t) -1) { }
COutPoint(const uint256& hashIn, uint32_t nIn): hash(hashIn), n(nIn) { }
ADD_SERIALIZE_METHODS; //用來序列化資料結構,方便儲存和傳輸
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action) {
READWRITE(hash);
READWRITE(n);
}
void SetNull() { hash.SetNull(); n = (uint32_t) -1; }
bool IsNull() const { return (hash.IsNull() && n == (uint32_t) -1); }
//小於號<過載函式
friend bool operator<(const COutPoint& a, const COutPoint& b)
{
int cmp = a.hash.Compare(b.hash);
return cmp < 0 || (cmp == 0 && a.n < b.n);
}
//==過載函式
friend bool operator==(const COutPoint& a, const COutPoint& b)
{
return (a.hash == b.hash && a.n == b.n);
}
//!=過載函式
friend bool operator!=(const COutPoint& a, const COutPoint& b)
{
return !(a == b);
}
std::string ToString() const;
};
複製程式碼
CTxIn
/** An input of a transaction. It contains the location of the previous
* transaction's output that it claims and a signature that matches the
* output's public key.
*
**交易的輸入,包括當前輸入所對應上一筆交易的輸出位置,
*並且還包括上一筆輸出所需要的簽名指令碼
*/
class CTxIn
{
public:
COutPoint prevout; //上一筆交易輸出位置
CScript scriptSig; //解鎖指令碼
uint32_t nSequence; /**序列號,可用於交易的鎖定
nSequence欄位的設計初心是想讓交易能在在記憶體中修改,可惜後面從未運用過
對於具有nLocktime或CHECKLOCKTIMEVERIFY的交易,
nSequence值必須設定為小於2^32,以使時間鎖定器有效。通常設定為2^32-1
由於BIP-68的啟用,新的共識規則適用於任何包含nSequence值小於2^31的輸入的交易(bit 1<<31 is not set)。
以程式設計方式,這意味著如果沒有設定最高有效(bit 1<<31),它是一個表示“相對鎖定時間”的標誌。
否則(bit 1<<31set),nSequence值被保留用於其他用途,
例如啟用CHECKLOCKTIMEVERIFY,nLocktime,Opt-In-Replace-By-Fee以及其他未來的新產品。
一筆輸入交易,當輸入指令碼中的nSequence值小於2^31時,就是相對時間鎖定的輸入交易。
這種交易只有到了相對鎖定時間後才生效。例如,
具有30個區塊的nSequence相對時間鎖的一個輸入的交易
只有在從輸入中引用的UTXO開始的時間起至少有30個塊時才有效。
由於nSequence是每個輸入欄位,因此交易可能包含任何數量的時間鎖定輸入,
所有這些都必須具有足夠的時間以使交易有效。
*/
CScriptWitness scriptWitness; //! Only serialized through CTransaction
/* Setting nSequence to this value for every input in a transaction
* disables nLockTime.
*
* 規則1:如果一筆交易中所有的SEQUENCE_FINAL都被賦值了相應的nSequence,那麼nLockTime就會被禁用
*/
static const uint32_t SEQUENCE_FINAL = 0xffffffff;
/* Below flags apply in the context of BIP 68*/
/* If this flag set, CTxIn::nSequence is NOT interpreted as a
* relative lock-time.
*
* 規則2:如果設定了該值,nSequence不被用於相對時間鎖定。規則1失效
*/
static const uint32_t SEQUENCE_LOCKTIME_DISABLE_FLAG = (1 << 31);
/* If CTxIn::nSequence encodes a relative lock-time and this flag
* is set, the relative lock-time has units of 512 seconds,
* otherwise it specifies blocks with a granularity of 1.
*
* 規則3:如果規則1有效並且設定了此變數,那麼相對鎖定時間單位為512秒,否則鎖定時間就為1個區塊
*/
static const uint32_t SEQUENCE_LOCKTIME_TYPE_FLAG = (1 << 22);
/* If CTxIn::nSequence encodes a relative lock-time, this mask is
* applied to extract that lock-time from the sequence field.
*
* 規則4:如果nSequence用於相對時間鎖,即規則1有效,那麼這個變數就用來從nSequence計算對應的鎖定時間
*/
static const uint32_t SEQUENCE_LOCKTIME_MASK = 0x0000ffff;
/* In order to use the same number of bits to encode roughly the
* same wall-clock duration, and because blocks are naturally
* limited to occur every 600s on average, the minimum granularity
* for time-based relative lock-time is fixed at 512 seconds.
* Converting from CTxIn::nSequence to seconds is performed by
* multiplying by 512 = 2^9, or equivalently shifting up by
* 9 bits.
*
* 相對時間鎖粒度
* 為了使用相同的位數來粗略地編碼相同的掛鐘時間,
* 因為區塊的產生限制於每600s產生一個,
* 相對時間鎖定的最小單位為512是,512 = 2^9
* 所以相對時間鎖定的時間轉化為相當於當前值左移9位
*/
static const int SEQUENCE_LOCKTIME_GRANULARITY = 9;
CTxIn()
{
nSequence = SEQUENCE_FINAL;
}
explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);
CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action) {
READWRITE(prevout);
READWRITE(scriptSig);
READWRITE(nSequence);
}
friend bool operator==(const CTxIn& a, const CTxIn& b)
{
return (a.prevout == b.prevout &&
a.scriptSig == b.scriptSig &&
a.nSequence == b.nSequence);
}
friend bool operator!=(const CTxIn& a, const CTxIn& b)
{
return !(a == b);
}
std::string ToString() const;
};
複製程式碼
CTxOut
/** An output of a transaction. It contains the public key that the next input
* must be able to sign with to claim it.
*
**交易輸出,包含輸出金額和鎖定指令碼
*/
class CTxOut
{
public:
CAmount nValue; //輸出金額
CScript scriptPubKey; //鎖定指令碼
CTxOut()
{
SetNull();
}
CTxOut(const CAmount& nValueIn, CScript scriptPubKeyIn);
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action) {
READWRITE(nValue);
READWRITE(scriptPubKey);
}
void SetNull()
{
nValue = -1;
scriptPubKey.clear();
}
bool IsNull() const
{
return (nValue == -1);
}
friend bool operator==(const CTxOut& a, const CTxOut& b)
{
return (a.nValue == b.nValue &&
a.scriptPubKey == b.scriptPubKey);
}
friend bool operator!=(const CTxOut& a, const CTxOut& b)
{
return !(a == b);
}
std::string ToString() const;
};
複製程式碼
CTransaction
/** The basic transaction that is broadcasted on the network and contained in
* blocks. A transaction can contain multiple inputs and outputs.
*
*
** 基本的交易,就是那些在網路中廣播並被最終打包到區塊中的資料結構。
* 一個交易可以包含多個交易輸入和輸出
*/
class CTransaction
{
public:
// Default transaction version.
static const int32_t CURRENT_VERSION=2; //預設交易版本
// Changing the default transaction version requires a two step process: first
// adapting relay policy by bumping MAX_STANDARD_VERSION, and then later date
// bumping the default CURRENT_VERSION at which point both CURRENT_VERSION and
// MAX_STANDARD_VERSION will be equal.
/** 更改預設交易版本需要兩個步驟:
* 1.首先通過碰撞MAX_STANDARD_VERSION來調整中繼策略,
* 2.然後在稍後的日期碰撞預設的CURRENT_VERSION
*
* 最終MAX_STANDARD_VERSION和CURRENT_VERSION會一致
*/
static const int32_t MAX_STANDARD_VERSION=2;
// The local variables are made const to prevent unintended modification
// without updating the cached hash value. However, CTransaction is not
// actually immutable; deserialization and assignment are implemented,
// and bypass the constness. This is safe, as they update the entire
// strcture, including the hash.
/** 下面這些變數都被定義為常量型別,從而避免無意識的修改了交易而沒有更新快取的hash值;
* 然而CTransaction不是可變的
* 反序列化和分配被執行的時候會繞過常量
* 這才是安全的,因為更新整個結構包括雜湊值
*/
const std::vector<CTxIn> vin; //交易輸入
const std::vector<CTxOut> vout; //交易輸出
const int32_t nVersion; //版本
const uint32_t nLockTime; //鎖定時間
private:
/** Memory only. */
const uint256 hash;
uint256 ComputeHash() const;
public:
/** Construct a CTransaction that qualifies as IsNull() */
CTransaction();
/** Convert a CMutableTransaction into a CTransaction. */
/**可變交易轉換為交易*/
CTransaction(const CMutableTransaction &tx);
CTransaction(CMutableTransaction &&tx);
template <typename Stream>
inline void Serialize(Stream& s) const {
SerializeTransaction(*this, s);
}
/** This deserializing constructor is provided instead of an Unserialize method.
* Unserialize is not possible, since it would require overwriting const fields.
*
** 提供此反序列化建構函式而不是Unserialize方法。
* 反序列化是不可能的,因為它需要覆蓋const欄位
*/
template <typename Stream>
CTransaction(deserialize_type, Stream& s) : CTransaction(CMutableTransaction(deserialize, s)) {}
bool IsNull() const {
return vin.empty() && vout.empty();
}
const uint256& GetHash() const {
return hash;
}
// Compute a hash that includes both transaction and witness data
uint256 GetWitnessHash() const; //計算包含交易和witness資料的雜湊
// Return sum of txouts.
CAmount GetValueOut() const; //返回交易出書金額總和
// GetValueIn() is a method on CCoinsViewCache, because
// inputs must be known to compute value in.
/**
* Get the total transaction size in bytes, including witness data.
* "Total Size" defined in BIP141 and BIP144.
* @return Total transaction size in bytes
*/
unsigned int GetTotalSize() const; // 返回交易大小
bool IsCoinBase() const //判斷是否是創幣交易
{
return (vin.size() == 1 && vin[0].prevout.IsNull());
}
friend bool operator==(const CTransaction& a, const CTransaction& b)
{
return a.hash == b.hash;
}
friend bool operator!=(const CTransaction& a, const CTransaction& b)
{
return a.hash != b.hash;
}
std::string ToString() const;
bool HasWitness() const
{
for (size_t i = 0; i < vin.size(); i++) {
if (!vin[i].scriptWitness.IsNull()) {
return true;
}
}
return false;
}
};
複製程式碼
CMutableTransaction
可變交易類,內容和CTransaction差不多。只是交易可以直接修改,廣播中傳播和打包到區塊的交易都是CTransaction型別。
交易結構
交易是比特幣的核心資料結構,包括區塊在內的資料結構都是在為交易服務。
整體結構
資料項 | 大小(Byte) | 資料型別 | 描述 |
---|---|---|---|
Version | 4 | uint32_t | 交易版本 |
tx_in count | Varies | CompactSize Unsigned Integer | 交易輸入量 |
tx_out count | Varies | CompactSize Unsigned Integer | 交易輸出量 |
tx_in | Varies | CTxIn | 交易輸入 |
tx_in | Varies | CTxOut | 交易輸出 |
lock_time | 4 | uint32_t | 交易鎖定時間,詳見鎖定規則 |
交易輸入TxIn
資料項 | 大小(Byte) | 資料型別 | 描述 |
---|---|---|---|
previous_output | 36 | COutPoint | 上一個交易的輸出 |
script bytes | Varies < 10000 | CompactSize Unsigned Integer | 解鎖指令碼大小 |
signature script | Varies | char[] | 解鎖指令碼 |
sequence | 4 | uint32_t | 序列號,可用於相對時間鎖定 |
交易輸出TxOut
資料項 | 大小(Byte) | 資料型別 | 描述 |
---|---|---|---|
value | 8 | int64_t | 交易輸出,單位為Satoshis |
pk_script bytes | Varies < 10000 | CompactSize Unsigned Integer | 鎖定指令碼大小 |
pk_script | Varies | char[] | 鎖定指令碼,定義花費須滿足的條件 |
創幣交易CoinbaseTransaction
每一個區塊內包含的第一條交易為CoinbaseTransaction,它作為對挖出該區塊的礦工的比特幣獎勵交易。
- 沒有TxIn
- 交易雜湊為0
- 輸出的索引值固定,為0xffffffff
- 大端儲存
- BIP34規定增加一個4位元組的height的欄位,現在這個引數是必須的
###參考文獻
. . . .
網際網路顛覆世界,區塊鏈顛覆網際網路!
--------------------------------------------------20180420 22:57