目錄
Outline
keras.datasets
- tf.data.Dataset.from_tensor_slices
- shuffle
- map
- batch
- repeat
will display
Input Pipeline
later(大資料集)
keras.datasets
- boston housing
- Boston housing price regression dataset
- mnist/fashion mnist
- MNIST/Fashion-MNIST dataset
- cifar10/100
- small images classification dataset
- imdb
- sentiment classification dataset
MNIST
import tensorflow as tf
from tensorflow import keras
# train: 60k | test: 10k
(x, y), (x_test, y_test) = keras.datasets.mnist.load_data()
x.shape
(60000, 28, 28)
y.shape
(60000,)
# 0純黑、255純白
x.min(), x.max(), x.mean()
(0, 255, 33.318421449829934)
x_test.shape, y_test.shape
((10000, 28, 28), (10000,))
y[:4]
array([5, 0, 4, 1], dtype=uint8)
# 0-9有10種分類結果
y_onehot = tf.one_hot(y, depth=10)
y_onehot[:2]
<tf.Tensor: id=13, shape=(2, 10), dtype=float32, numpy=
array([[0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32)>
CIFAR10/100
- 10個大類中有100個小類
# train: 50k | test: 10k
(x, y), (x_test, y_test) = keras.datasets.cifar10.load_data()
x.shape,y.shape,x_test.shape,y_test.shape
x.min(),x.max()
y[:4]
tf.data.Dataset
- from_tensor_slices()
db = tf.data.Dataset.from_tensor_slices(x_test)
next(iter(db)).shape
db = tf.data.Dataset.from_tensor_slices((x_test,y_test))
next(iter(db))[0].shape
.shuffle
- 打亂資料
db = tf.data.Dataset.from_tensor_slices(x_test,y_test)
db = db.shuffle(10000)
.map
- 資料預處理
def preprocess(x,y):
x = tf.cast(x,dtype=tf.float32)/255.
y = tf.cast(y,dtype=tf.int32)
y = tf.one_hot(y,depty=10)
return x,y
db2 = db.map(preprocess)
res = next(iter(db2))
res[0].shape,res[1].shape
res[1][:2]
.batch
- 一次性得到多張照片
db3 = db2.batch(32)
res = next(iter(db3))
res[0].shape,res[1].shape
db_iter = iter(db3)
while True:
next(db_iter)
.repeat()
# 迭代不退出
db4 = db3.repeat()
# 迭代兩次退出
db3 = db3.repeat(2)
For example
def prepare_mnist_features_and_labels(x,y):
x = tf.cast(x,tf.float32)/255.
y = tf.cast(y,tf.int64)
return x,y
def mnist_dataset():
(x,y),(x_val,y_val)=datasets.fashion_mnist.load_data()
y =tf.one_hot(y,depth=10)
y_val = tf.one_hot(y_val,depth=10)
ds = tf.data.Dataset.from_tensor_slices((x,y))
ds = ds.map(prepare_mnist_features_and_labels)
ds = ds.shffle(60000).batch(100)
ds_val = tf.data.Dataset.from_tensor_slices((x_val,y_val))
ds_val = ds_val.map(prepare_mnist_features_and_labels)
ds_val = ds_val.shuffle(10000).batch(100)
return ds,ds_val