moving window baseline
A moving window baseline corresponds to all AWR data that exists within the AWR retention period. This
is useful when using adaptive thresholds because the database can use AWR data in the entire AWR
retention period to compute metric threshold values. Oracle Database automatically maintains a systemdefined
moving window baseline. The default window size for the system-defined moving window baseline
is the current AWR retention period, which by default is 8 days. If you are planning to use adaptive
thresholds, consider using a larger moving window--such as 30 days--to accurately compute threshold
values. You can resize the moving window baseline by changing the number of days in the moving window
to a value that is equal to or less than the number of days in the AWR retention period. Therefore, to
increase the size of a moving window, you must first increase the AWR retention period accordingly
is useful when using adaptive thresholds because the database can use AWR data in the entire AWR
retention period to compute metric threshold values. Oracle Database automatically maintains a systemdefined
moving window baseline. The default window size for the system-defined moving window baseline
is the current AWR retention period, which by default is 8 days. If you are planning to use adaptive
thresholds, consider using a larger moving window--such as 30 days--to accurately compute threshold
values. You can resize the moving window baseline by changing the number of days in the moving window
to a value that is equal to or less than the number of days in the AWR retention period. Therefore, to
increase the size of a moving window, you must first increase the AWR retention period accordingly
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/26870952/viewspace-2152880/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- sql pan baselineSQL
- 【譯】 Types are moving to the right
- sql_plan_baselineSQL
- align-items:baseline 作用
- codeforces1472G. Moving to the CapitalAPI
- benchmark和baseline的區別
- 理解滑動平均(exponential moving average)
- Moving Tables(貪心演算法)演算法
- [轉帖]Moving the JDK to a Two Year LTS CadenceJDK
- 布匹缺陷檢測baseline提升過程
- Challenges preventing us moving to 64 bit transaction id (XID)?
- Flutter 佈局(四)- Baseline、FractionallySizedBox、IntrinsicHeight、IntrinsicWidth詳解FlutterFractionZed
- MDN之Window(三)【window.postMessage】
- Android-Window(一)——初識WindowAndroid
- JavaScript WindowJavaScript
- vim 使用者手冊第三章 moving around
- 【論文閱讀筆記】An Improved Neural Baseline for Temporal Relation Extraction筆記
- [Datawhale AI 夏令營] Task1: 跑通YOLO方案baselineAIYOLO
- [PaperReading] EgoPoseFormer: A Simple Baseline for Stereo Egocentric 3D Human Pose EstimationGoORM3D
- window.location.replace vs window.location.href
- 終於搞定了vertical-align:baseline對齊的問題
- window.top
- window.screenY
- window的特性
- window.parent
- window.self
- window.screenX
- window.innerHeight
- JavaScript window物件JavaScript物件
- window.opener
- window.outerWidth
- window.outerHeight
- window.location.href與window.location.hash區別
- 「譯」Liftoff:V8 引擎中全新的 WebAssembly baseline 編譯器Web編譯
- 強化學習-學習筆記14 | 策略梯度中的 Baseline強化學習筆記梯度
- 乾貨 | 呆滯庫存(Slow moving)產生原因分析和預防措施
- window 下搭建gitlibGit
- (function($,window,document){.......})用法Function