清華 NLP 團隊推薦:必讀的77篇機器閱讀理解論文
清華 NLP 團隊推薦:必讀的77篇機器閱讀理解論文
https://mp.weixin.qq.com/s/2VhgEieBwXymAv2qxO3MPw
【導讀】機器閱讀理解(Machine Reading Comprehension)是指讓機器閱讀文字,然後回答和閱讀內容相關的問題。閱讀理解是自然語言處理和人工智慧領域的重要前沿課題,對於提升機器智慧水平、使機器具有持續知識獲取能力具有重要價值,近年來受到學術界和工業界的廣泛關注。清華 NLP 團隊近期在 Github 上開源了一個必讀的機器閱讀理解文章專案,滿滿的都是乾貨,相信讀完這個 list 我們離 NLP 大牛更近了一步。
Github |
作者 | Yankai Lin, Deming Ye and Haoze Ji
整理報導 | huaiwen
【模型結構篇】
-
Memory networks. Jason Weston, Sumit Chopra, and Antoine Bordes. arXiv preprint arXiv:1410.3916 (2014).
-
Teaching Machines to Read and Comprehend. Hermann, Karl Moritz, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. NIPS 2015.
-
Text Understanding with the Attention Sum Reader Network. Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. ACL 2016.
-
A Thorough Examination of the Cnn/Daily Mail Reading Comprehension Task. Danqi Chen, Jason Bolton, and Christopher D. Manning. ACL 2016.
-
Long Short-Term Memory-Networks for Machine Reading. Jianpeng Cheng, Li Dong, and Mirella Lapata. EMNLP 2016.
-
Key-value Memory Networks for Directly Reading Documents. Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason Weston. EMNLP 2016.
-
Modeling Human Reading with Neural Attention. Michael Hahn and Frank Keller. EMNLP 2016.
-
Learning Recurrent Span Representations for Extractive Question Answering Kenton Lee, Shimi Salant, Tom Kwiatkowski, Ankur Parikh, Dipanjan Das, and Jonathan Berant. arXiv preprint arXiv:1611.01436 (2016).
-
Multi-Perspective Context Matching for Machine Comprehension. Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Florian. arXiv preprint arXiv:1612.04211.
-
Natural Language Comprehension with the Epireader. Adam Trischler, Zheng Ye, Xingdi Yuan, and Kaheer Suleman. EMNLP 2016.
-
Iterative Alternating Neural Attention for Machine Reading. Alessandro Sordoni, Philip Bachman, Adam Trischler, and Yoshua Bengio. arXiv preprint arXiv:1606.02245 (2016).
-
Bidirectional Attention Flow for Machine Comprehension. Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. ICLR 2017.
-
Machine Comprehension Using Match-lstm and Answer Pointer. Shuohang Wang and Jing Jiang. arXiv preprint arXiv:1608.07905 (2016).
-
Gated Self-matching Networks for Reading Comprehension and Question Answering. Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. ACL 2017.
-
Attention-over-attention Neural Networks for Reading Comprehension. Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. ACL 2017.
-
Gated-attention Readers for Text Comprehension. Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. ACL 2017.
-
A Constituent-Centric Neural Architecture for Reading Comprehension. Pengtao Xie and Eric Xing. ACL 2017.
-
Structural Embedding of Syntactic Trees for Machine Comprehension. Rui Liu, Junjie Hu, Wei Wei, Zi Yang, and Eric Nyberg. EMNLP 2017.
-
Accurate Supervised and Semi-Supervised Machine Reading for Long Documents. Izzeddin Gur, Daniel Hewlett, Alexandre Lacoste, and Llion Jones. EMNLP 2017.
-
MEMEN: Multi-layer Embedding with Memory Networks for Machine Comprehension. Boyuan Pan, Hao Li, Zhou Zhao, Bin Cao, Deng Cai, and Xiaofei He. arXiv preprint arXiv:1707.09098 (2017).
-
Dynamic Coattention Networks For Question Answering. Caiming Xiong, Victor Zhong, and Richard Socher. ICLR 2017
-
R-NET: Machine Reading Comprehension with Self-matching Networks. Natural Language Computing Group, Microsoft Research Asia.
-
Reasonet: Learning to Stop Reading in Machine Comprehension. Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. KDD 2017.
-
FusionNet: Fusing via Fully-Aware Attention with Application to Machine Comprehension. Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, and Weizhu Chen. ICLR 2018.
-
Making Neural QA as Simple as Possible but not Simpler. Dirk Weissenborn, Georg Wiese, and Laura Seiffe. CoNLL 2017.
-
Efficient and Robust Question Answering from Minimal Context over Documents. Sewon Min, Victor Zhong, Richard Socher, and Caiming Xiong. ACL 2018.
-
Simple and Effective Multi-Paragraph Reading Comprehension. Christopher Clark and Matt Gardner. ACL 2018.
-
Neural Speed Reading via Skim-RNN. Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh Hajishirzi. ICLR2018.
-
Hierarchical Attention Flow forMultiple-Choice Reading Comprehension. Haichao Zhu,� Furu Wei, Bing Qin, and Ting Liu. AAAI 2018.
-
Towards Reading Comprehension for Long Documents. Yuanxing Zhang, Yangbin Zhang, Kaigui Bian, and Xiaoming Li. IJCAI 2018.
-
Joint Training of Candidate Extraction and Answer Selection for Reading Comprehension. Zhen Wang, Jiachen Liu, Xinyan Xiao, Yajuan Lyu, and Tian Wu. ACL 2018.
-
Multi-Passage Machine Reading Comprehension with Cross-Passage Answer Verification. Yizhong Wang, Kai Liu, Jing Liu, Wei He, Yajuan Lyu, Hua Wu, Sujian Li, and Haifeng Wang. ACL 2018.
-
Reinforced Mnemonic Reader for Machine Reading Comprehension. Minghao Hu, Yuxing Peng, Zhen Huang, Xipeng Qiu, Furu Wei, and Ming Zhou. IJCAI 2018.
-
Stochastic Answer Networks for Machine Reading Comprehension. Xiaodong Liu, Yelong Shen, Kevin Duh, and Jianfeng Gao. ACL 2018.
-
Multi-Granularity Hierarchical Attention Fusion Networks for Reading Comprehension and Question Answering. Wei Wang, Ming Yan, and Chen Wu. ACL 2018.
-
A Multi-Stage Memory Augmented Neural Networkfor Machine Reading Comprehension. Seunghak Yu, Sathish Indurthi, Seohyun Back, and Haejun Lee. ACL 2018 workshop.
-
S-NET: From Answer Extraction to Answer Generation for Machine Reading Comprehension. Chuanqi Tan, Furu Wei, Nan Yang, Bowen Du, Weifeng Lv, and Ming Zhou. AAAI2018.
-
Ask the Right Questions: Active Question Reformulation with Reinforcement Learning. Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Wojciech Gajewski, Andrea Gesmundo, Neil Houlsby, and Wei Wang. ICLR2018.
-
QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension. Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, and Quoc V. Le. ICLR2018.
-
Read + Verify: Machine Reading Comprehension with Unanswerable Questions. Minghao Hu, Furu Wei, Yuxing Peng, Zhen Huang, Nan Yang, and Ming Zhou. NAACL2018.
【利用額外知識篇】
-
Leveraging Knowledge Bases in LSTMs for Improving Machine Reading. Bishan Yang and Tom Mitchell. ACL 2017.
-
Learned in Translation: Contextualized Word Vectors. Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. arXiv preprint arXiv:1708.00107 (2017).
-
Knowledgeable Reader: Enhancing Cloze-Style Reading Comprehension with External Commonsense Knowledge. Todor Mihaylov and Anette Frank. ACL 2018.
-
A Comparative Study of Word Embeddings for Reading Comprehension. Bhuwan Dhingra, Hanxiao Liu, Ruslan Salakhutdinov, and William W. Cohen. arXiv preprint arXiv:1703.00993 (2017).
-
Deep contextualized word representations. Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. NAACL 2018.
-
Improving Language Understanding by Generative Pre-Training. Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. OpenAI.
-
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. arXiv preprint arXiv:1810.04805 (2018).
【探索篇】
-
Adversarial Examples for Evaluating Reading Comprehension Systems. Robin Jia, and Percy Liang. EMNLP 2017.
-
Did the Model Understand the Question? Pramod Kaushik Mudrakarta, Ankur Taly, Mukund Sundararajan, and Kedar Dhamdhere. ACL 2018.
【開放域問答篇】
-
Reading Wikipedia to Answer Open-Domain Questions. Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. ACL 2017.
-
R^3: Reinforced Reader-Ranker for Open-Domain Question Answering. Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang, Shiyu Chang, Gerald Tesauro, Bowen Zhou, and Jing Jiang. AAAI 2018.
-
Evidence Aggregation for Answer Re-Ranking in Open-Domain Question Answering. Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang, Xiaoxiao Guo, Shiyu Chang, Zhiguo Wang, Tim Klinger, Gerald Tesauro, and Murray Campbell. ICLR 2018.
-
Denoising Distantly Supervised Open-Domain Question Answering. Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun. ACL 2018.
【資料集篇】
-
(SQuAD 1.0) SQuAD: 100,000+ Questions for Machine Comprehension of Text. Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. EMNLP 2016.
-
(SQuAD 2.0) Know What You Don't Know: Unanswerable Questions for SQuAD. Pranav Rajpurkar, Robin Jia, and Percy Liang. ACL 2018.
-
(MS MARCO) MS MARCO: A Human Generated MAchine Reading COmprehension Dataset. Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and Li Deng. arXiv preprint arXiv:1611.09268 (2016).
-
(Quasar) Quasar: Datasets for Question Answering by Search and Reading. Bhuwan Dhingra, Kathryn Mazaitis, and William W. Cohen. arXiv preprint arXiv:1707.03904 (2017).
-
(TriviaQA) TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension. Mandar Joshi, Eunsol Choi, Daniel S. Weld, Luke Zettlemoyer. arXiv preprint arXiv:1705.03551 (2017).
-
(SearchQA) SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine. Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur Guney, Volkan Cirik, and Kyunghyun Cho. arXiv preprint arXiv:1704.05179 (2017).
-
(QuAC) QuAC : Question Answering in Context. Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and Luke Zettlemoyer. arXiv preprint arXiv:1808.07036 (2018).
-
(CoQA) CoQA: A Conversational Question Answering Challenge. Siva Reddy, Danqi Chen, and Christopher D. Manning. arXiv preprint arXiv:1808.07042 (2018).
-
(MCTest) MCTest: A Challenge Dataset for the Open-Domain Machine Comprehension of Text. Matthew Richardson, Christopher J.C. Burges, and Erin Renshaw. EMNLP 2013.
-
(CNN/Daily Mail) Teaching Machines to Read and Comprehend. Hermann, Karl Moritz, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. NIPS 2015.
-
(CBT) The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations. Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. arXiv preprint arXiv:1511.02301 (2015).
-
(bAbi) Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks. Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Merriënboer, Armand Joulin, and Tomas Mikolov. arXiv preprint arXiv:1502.05698 (2015).
-
(LAMBADA) The LAMBADA Dataset:Word Prediction Requiring a Broad Discourse Context. Denis Paperno, Germ ́an Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fern ́andez. ACL 2016.
-
(SCT) LSDSem 2017 Shared Task: The Story Cloze Test. Nasrin Mostafazadeh, Michael Roth, Annie Louis,Nathanael Chambers, and James F. Allen. ACL 2017 workshop.
-
(Who did What) Who did What: A Large-Scale Person-Centered Cloze Dataset Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gimpel, and David McAllester. EMNLP 2016.
-
(NewsQA) NewsQA: A Machine Comprehension Dataset. Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman, and Kaheer Suleman. arXiv preprint arXiv:1611.09830 (2016).
-
(RACE) RACE: Large-scale ReAding Comprehension Dataset From Examinations. Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. EMNLP 2017.
-
(ARC) Think you have Solved Question Answering?Try ARC, the AI2 Reasoning Challenge. Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. arXiv preprint arXiv:1803.05457 (2018).
-
(MCScript) MCScript: A Novel Dataset for Assessing Machine Comprehension Using Script Knowledge. Simon Ostermann, Ashutosh Modi, Michael Roth, Stefan Thater, and Manfred Pinkal. arXiv preprint arXiv:1803.05223.
-
(NarrativeQA) The NarrativeQA Reading Comprehension Challenge . Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis, and Edward Grefenstette. TACL 2018.
-
(DuoRC) DuoRC: Towards Complex Language Understanding with Paraphrased Reading Comprehension. Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, and Karthik Sankaranarayanan. ACL 2018.
-
(CLOTH) Large-scale Cloze Test Dataset Created by Teachers. Qizhe Xie, Guokun Lai, Zihang Dai, and Eduard Hovy. EMNLP 2018.
-
(DuReader) DuReader: a Chinese Machine Reading Comprehension Dataset from Real-world Applications. Wei He, Kai Liu, Yajuan Lyu, Shiqi Zhao, Xinyan Xiao, Yuan Liu, Yizhong Wang, Hua Wu, Qiaoqiao She, Xuan Liu, Tian Wu, and Haifeng Wang. ACL 2018 Workshop.
-
(CliCR) CliCR: a Dataset of Clinical Case Reports for Machine Reading Comprehension. Simon Suster and Walter Daelemans. NAACL 2018.
-END-
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/29829936/viewspace-2218346/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 論文推薦:機器閱讀理解,文字摘要,Seq2Seq加速
- 近期必讀的12篇「推薦系統」相關論文
- 推薦系統公平性論文閱讀(二)
- 推薦系統公平性論文閱讀(三)
- 推薦系統公平性論文閱讀(四)
- 推薦系統公平性論文閱讀(六)
- 谷歌大腦團隊官方推薦 | JavaScript 機器學習領域必讀之作谷歌JavaScript機器學習
- 論文閱讀:SiameseFC
- GeoChat論文閱讀
- 「每週CV論文推薦」 初學GAN必須要讀的文章
- 機器閱讀理解與文字問答技術研究 | 博士學位論文
- 【讀論文】 -- 推薦系統研究綜述
- 清華NLP實驗室劉知遠:如何寫一篇合格的NLP論文
- 如何閱讀科研論文
- 阿里DMR論文閱讀阿里
- 「推薦系統的廣泛和深度學習」- 論文閱讀和翻譯深度學習
- [Github 專案推薦] 一個更好閱讀和查詢論文的網站Github網站
- 並行多工學習論文閱讀(五):論文閱讀總結並行
- 【論文閱讀筆記】多模態大語言模型必讀 —— LLaVA筆記模型
- MapReduce 論文閱讀筆記筆記
- Q-REG論文閱讀
- SSD論文閱讀筆記筆記
- 機器閱讀理解Match-LSTM模型模型
- 關於遠端監督,我們來推薦幾篇值得讀的論文
- 解讀2016年最值得讀的三篇NLP論文 + 線上Chat實錄
- Redis推薦閱讀筆記整理Redis筆記
- Python 閱讀書目推薦Python
- 閱讀推薦——深入淺出Mesos
- 「DNN for YouTube Recommendations」- 論文閱讀DNN
- 論文閱讀 狀態壓縮
- [論文閱讀] Hector MappingAPP
- AutoEmbedding論文閱讀筆記筆記
- G-FRNet論文閱讀
- XGBoost論文閱讀及其原理
- 兩篇知識表示方面的論文閱讀筆記筆記
- 論文閱讀 第一篇:mutual context modelContext
- 推薦系統必讀的10篇精選技術文章
- 本週有哪些值得讀的論文?15篇良心推薦瞭解一下