PostgreSQL 原始碼解讀(6)- 插入資料#5(ExecModifyTable)
本文簡單介紹了PG插入資料部分的原始碼,主要內容包括ExecModifyTable函式的實現邏輯,該函式位於nodeModifyTable.c檔案中。
一、基礎資訊
ExecModifyTable函式使用的資料結構、宏定義以及依賴的函式等。
資料結構/宏定義
1、PartitionTupleRouting
//分割槽表相關的資料結構,再續解讀分割槽表處理時再行更新
/*-----------------------
* PartitionTupleRouting - Encapsulates all information required to execute
* tuple-routing between partitions.
*
* partition_dispatch_info Array of PartitionDispatch objects with one
* entry for every partitioned table in the
* partition tree.
* num_dispatch number of partitioned tables in the partition
* tree (= length of partition_dispatch_info[])
* partition_oids Array of leaf partitions OIDs with one entry
* for every leaf partition in the partition tree,
* initialized in full by
* ExecSetupPartitionTupleRouting.
* partitions Array of ResultRelInfo* objects with one entry
* for every leaf partition in the partition tree,
* initialized lazily by ExecInitPartitionInfo.
* num_partitions Number of leaf partitions in the partition tree
* (= 'partitions_oid'/'partitions' array length)
* parent_child_tupconv_maps Array of TupleConversionMap objects with one
* entry for every leaf partition (required to
* convert tuple from the root table's rowtype to
* a leaf partition's rowtype after tuple routing
* is done)
* child_parent_tupconv_maps Array of TupleConversionMap objects with one
* entry for every leaf partition (required to
* convert an updated tuple from the leaf
* partition's rowtype to the root table's rowtype
* so that tuple routing can be done)
* child_parent_map_not_required Array of bool. True value means that a map is
* determined to be not required for the given
* partition. False means either we haven't yet
* checked if a map is required, or it was
* determined to be required.
* subplan_partition_offsets Integer array ordered by UPDATE subplans. Each
* element of this array has the index into the
* corresponding partition in partitions array.
* num_subplan_partition_offsets Length of 'subplan_partition_offsets' array
* partition_tuple_slot TupleTableSlot to be used to manipulate any
* given leaf partition's rowtype after that
* partition is chosen for insertion by
* tuple-routing.
* root_tuple_slot TupleTableSlot to be used to transiently hold
* copy of a tuple that's being moved across
* partitions in the root partitioned table's
* rowtype
*-----------------------
*/
typedef struct PartitionTupleRouting
{
PartitionDispatch *partition_dispatch_info;
int num_dispatch;
Oid *partition_oids;
ResultRelInfo **partitions;
int num_partitions;
TupleConversionMap **parent_child_tupconv_maps;
TupleConversionMap **child_parent_tupconv_maps;
bool *child_parent_map_not_required;
int *subplan_partition_offsets;
int num_subplan_partition_offsets;
TupleTableSlot *partition_tuple_slot;
TupleTableSlot *root_tuple_slot;
} PartitionTupleRouting;
2、CmdType
//命令型別,DDL命令都歸到CMD_UTILITY裡面了
/*
* CmdType -
* enums for type of operation represented by a Query or PlannedStmt
*
* This is needed in both parsenodes.h and plannodes.h, so put it here...
*/
typedef enum CmdType
{
CMD_UNKNOWN,
CMD_SELECT, /* select stmt */
CMD_UPDATE, /* update stmt */
CMD_INSERT, /* insert stmt */
CMD_DELETE,
CMD_UTILITY, /* cmds like create, destroy, copy, vacuum,
* etc. */
CMD_NOTHING /* dummy command for instead nothing rules
* with qual */
} CmdType;
3、JunkFilter
//執行期需要的Attribute成為junk attribute,實際的Tuple需要使用JunkFilter過濾這些屬性
/* ----------------
* JunkFilter
*
* This class is used to store information regarding junk attributes.
* A junk attribute is an attribute in a tuple that is needed only for
* storing intermediate information in the executor, and does not belong
* in emitted tuples. For example, when we do an UPDATE query,
* the planner adds a "junk" entry to the targetlist so that the tuples
* returned to ExecutePlan() contain an extra attribute: the ctid of
* the tuple to be updated. This is needed to do the update, but we
* don't want the ctid to be part of the stored new tuple! So, we
* apply a "junk filter" to remove the junk attributes and form the
* real output tuple. The junkfilter code also provides routines to
* extract the values of the junk attribute(s) from the input tuple.
*
* targetList: the original target list (including junk attributes).
* cleanTupType: the tuple descriptor for the "clean" tuple (with
* junk attributes removed).
* cleanMap: A map with the correspondence between the non-junk
* attribute numbers of the "original" tuple and the
* attribute numbers of the "clean" tuple.
* resultSlot: tuple slot used to hold cleaned tuple.
* junkAttNo: not used by junkfilter code. Can be used by caller
* to remember the attno of a specific junk attribute
* (nodeModifyTable.c keeps the "ctid" or "wholerow"
* attno here).
* ----------------
*/
typedef struct JunkFilter
{
NodeTag type;
List *jf_targetList;
TupleDesc jf_cleanTupType;
AttrNumber *jf_cleanMap;
TupleTableSlot *jf_resultSlot;
AttrNumber jf_junkAttNo;
} JunkFilter;
4、Datum
//實際型別為unsigned long int ,無符號長整型整數
/*
* A Datum contains either a value of a pass-by-value type or a pointer to a
* value of a pass-by-reference type. Therefore, we require:
*
* sizeof(Datum) == sizeof(void *) == 4 or 8
*
* The macros below and the analogous macros for other types should be used to
* convert between a Datum and the appropriate C type.
*/
typedef uintptr_t Datum;
uintptr_t unsigned integer type capable of holding a pointer,defined in header <stdint.h>
typedef unsigned long int uintptr_t;
5、CHECK_FOR_INTERRUPTS
/ * The CHECK_FOR_INTERRUPTS() macro is called at strategically located spots
* where it is normally safe to accept a cancel or die interrupt. In some
* cases, we invoke CHECK_FOR_INTERRUPTS() inside low-level subroutines that
* might sometimes be called in contexts that do *not* want to allow a cancel
* or die interrupt. The HOLD_INTERRUPTS() and RESUME_INTERRUPTS() macros
* allow code to ensure that no cancel or die interrupt will be accepted,
* even if CHECK_FOR_INTERRUPTS() gets called in a subroutine. The interrupt
* will be held off until CHECK_FOR_INTERRUPTS() is done outside any
* HOLD_INTERRUPTS() ... RESUME_INTERRUPTS() section.
*/
#define CHECK_FOR_INTERRUPTS() \
do { \
if (InterruptPending) \
ProcessInterrupts(); \
} while(0)
依賴的函式
1、fireBSTriggers
//觸發語句級的觸發器
/*
* Process BEFORE EACH STATEMENT triggers
*/
static void
fireBSTriggers(ModifyTableState *node)
{
ModifyTable *plan = (ModifyTable *) node->ps.plan;
ResultRelInfo *resultRelInfo = node->resultRelInfo;
/*
* If the node modifies a partitioned table, we must fire its triggers.
* Note that in that case, node->resultRelInfo points to the first leaf
* partition, not the root table.
*/
if (node->rootResultRelInfo != NULL)
resultRelInfo = node->rootResultRelInfo;
switch (node->operation)
{
case CMD_INSERT:
ExecBSInsertTriggers(node->ps.state, resultRelInfo);
if (plan->onConflictAction == ONCONFLICT_UPDATE)
ExecBSUpdateTriggers(node->ps.state,
resultRelInfo);
break;
case CMD_UPDATE:
ExecBSUpdateTriggers(node->ps.state, resultRelInfo);
break;
case CMD_DELETE:
ExecBSDeleteTriggers(node->ps.state, resultRelInfo);
break;
default:
elog(ERROR, "unknown operation");
break;
}
}
2、ResetPerTupleExprContext
/* Reset an EState's per-output-tuple exprcontext, if one's been created */
#define ResetPerTupleExprContext(estate) \
do { \
if ((estate)->es_per_tuple_exprcontext) \
ResetExprContext((estate)->es_per_tuple_exprcontext); \
} while (0)
3、ExecProcNode
//執行子計劃時使用,這個函式同時也是高N級的函式,後續再行解讀
4、TupIsNull
//判斷TupleTableSlot 是否為Null(包括Empty)
/*
* TupIsNull -- is a TupleTableSlot empty?
*/
#define TupIsNull(slot) \
((slot) == NULL || (slot)->tts_isempty)
5、EvalPlanQualSetPlan
//TODO
/*
* EvalPlanQualSetPlan -- set or change subplan of an EPQState.
*
* We need this so that ModifyTable can deal with multiple subplans.
*/
void
EvalPlanQualSetPlan(EPQState *epqstate, Plan *subplan, List *auxrowmarks)
{
/* If we have a live EPQ query, shut it down */
EvalPlanQualEnd(epqstate);
/* And set/change the plan pointer */
epqstate->plan = subplan;
/* The rowmarks depend on the plan, too */
epqstate->arowMarks = auxrowmarks;
}
6、tupconv_map_for_subplan
//分割槽表使用,後續再行解析
//TODO
/*
* For a given subplan index, get the tuple conversion map.
*/
static TupleConversionMap *
tupconv_map_for_subplan(ModifyTableState *mtstate, int whichplan)
{
/*
* If a partition-index tuple conversion map array is allocated, we need
* to first get the index into the partition array. Exactly *one* of the
* two arrays is allocated. This is because if there is a partition array
* required, we don't require subplan-indexed array since we can translate
* subplan index into partition index. And, we create a subplan-indexed
* array *only* if partition-indexed array is not required.
*/
if (mtstate->mt_per_subplan_tupconv_maps == NULL)
{
int leaf_index;
PartitionTupleRouting *proute = mtstate->mt_partition_tuple_routing;
/*
* If subplan-indexed array is NULL, things should have been arranged
* to convert the subplan index to partition index.
*/
Assert(proute && proute->subplan_partition_offsets != NULL &&
whichplan < proute->num_subplan_partition_offsets);
leaf_index = proute->subplan_partition_offsets[whichplan];
return TupConvMapForLeaf(proute, getTargetResultRelInfo(mtstate),
leaf_index);
}
else
{
Assert(whichplan >= 0 && whichplan < mtstate->mt_nplans);
return mtstate->mt_per_subplan_tupconv_maps[whichplan];
}
}
7、ExecProcessReturning
//返回結果Tuple
//更詳細的解讀有待執行查詢語句時的分析解讀
/*
* ExecProcessReturning --- evaluate a RETURNING list
*
* resultRelInfo: current result rel
* tupleSlot: slot holding tuple actually inserted/updated/deleted
* planSlot: slot holding tuple returned by top subplan node
*
* Note: If tupleSlot is NULL, the FDW should have already provided econtext's
* scan tuple.
*
* Returns a slot holding the result tuple
*/
static TupleTableSlot *
ExecProcessReturning(ResultRelInfo *resultRelInfo,
TupleTableSlot *tupleSlot,
TupleTableSlot *planSlot)
{
ProjectionInfo *projectReturning = resultRelInfo->ri_projectReturning;
ExprContext *econtext = projectReturning->pi_exprContext;
/*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous cycle.
*/
ResetExprContext(econtext);
/* Make tuple and any needed join variables available to ExecProject */
if (tupleSlot)
econtext->ecxt_scantuple = tupleSlot;
else
{
HeapTuple tuple;
/*
* RETURNING expressions might reference the tableoid column, so
* initialize t_tableOid before evaluating them.
*/
Assert(!TupIsNull(econtext->ecxt_scantuple));
tuple = ExecMaterializeSlot(econtext->ecxt_scantuple);
tuple->t_tableOid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
}
econtext->ecxt_outertuple = planSlot;
/* Compute the RETURNING expressions */
return ExecProject(projectReturning);
}
/* ----------------
* ProjectionInfo node information
*
* This is all the information needed to perform projections ---
* that is, form new tuples by evaluation of targetlist expressions.
* Nodes which need to do projections create one of these.
*
* The target tuple slot is kept in ProjectionInfo->pi_state.resultslot.
* ExecProject() evaluates the tlist, forms a tuple, and stores it
* in the given slot. Note that the result will be a "virtual" tuple
* unless ExecMaterializeSlot() is then called to force it to be
* converted to a physical tuple. The slot must have a tupledesc
* that matches the output of the tlist!
* ----------------
*/
typedef struct ProjectionInfo
{
NodeTag type;
/* instructions to evaluate projection */
ExprState pi_state;
/* expression context in which to evaluate expression */
ExprContext *pi_exprContext;
} ProjectionInfo;
/* ----------------
* ExprContext
*
* This class holds the "current context" information
* needed to evaluate expressions for doing tuple qualifications
* and tuple projections. For example, if an expression refers
* to an attribute in the current inner tuple then we need to know
* what the current inner tuple is and so we look at the expression
* context.
*
* There are two memory contexts associated with an ExprContext:
* * ecxt_per_query_memory is a query-lifespan context, typically the same
* context the ExprContext node itself is allocated in. This context
* can be used for purposes such as storing function call cache info.
* * ecxt_per_tuple_memory is a short-term context for expression results.
* As the name suggests, it will typically be reset once per tuple,
* before we begin to evaluate expressions for that tuple. Each
* ExprContext normally has its very own per-tuple memory context.
*
* CurrentMemoryContext should be set to ecxt_per_tuple_memory before
* calling ExecEvalExpr() --- see ExecEvalExprSwitchContext().
* ----------------
*/
typedef struct ExprContext
{
NodeTag type;
/* Tuples that Var nodes in expression may refer to */
#define FIELDNO_EXPRCONTEXT_SCANTUPLE 1
TupleTableSlot *ecxt_scantuple;
#define FIELDNO_EXPRCONTEXT_INNERTUPLE 2
TupleTableSlot *ecxt_innertuple;
#define FIELDNO_EXPRCONTEXT_OUTERTUPLE 3
TupleTableSlot *ecxt_outertuple;
/* Memory contexts for expression evaluation --- see notes above */
MemoryContext ecxt_per_query_memory;
MemoryContext ecxt_per_tuple_memory;
/* Values to substitute for Param nodes in expression */
ParamExecData *ecxt_param_exec_vals; /* for PARAM_EXEC params */
ParamListInfo ecxt_param_list_info; /* for other param types */
/*
* Values to substitute for Aggref nodes in the expressions of an Agg
* node, or for WindowFunc nodes within a WindowAgg node.
*/
#define FIELDNO_EXPRCONTEXT_AGGVALUES 8
Datum *ecxt_aggvalues; /* precomputed values for aggs/windowfuncs */
#define FIELDNO_EXPRCONTEXT_AGGNULLS 9
bool *ecxt_aggnulls; /* null flags for aggs/windowfuncs */
/* Value to substitute for CaseTestExpr nodes in expression */
#define FIELDNO_EXPRCONTEXT_CASEDATUM 10
Datum caseValue_datum;
#define FIELDNO_EXPRCONTEXT_CASENULL 11
bool caseValue_isNull;
/* Value to substitute for CoerceToDomainValue nodes in expression */
#define FIELDNO_EXPRCONTEXT_DOMAINDATUM 12
Datum domainValue_datum;
#define FIELDNO_EXPRCONTEXT_DOMAINNULL 13
bool domainValue_isNull;
/* Link to containing EState (NULL if a standalone ExprContext) */
struct EState *ecxt_estate;
/* Functions to call back when ExprContext is shut down or rescanned */
ExprContext_CB *ecxt_callbacks;
} ExprContext;
/*
* ExecProject
*
* Projects a tuple based on projection info and stores it in the slot passed
* to ExecBuildProjectInfo().
*
* Note: the result is always a virtual tuple; therefore it may reference
* the contents of the exprContext's scan tuples and/or temporary results
* constructed in the exprContext. If the caller wishes the result to be
* valid longer than that data will be valid, he must call ExecMaterializeSlot
* on the result slot.
*/
#ifndef FRONTEND
static inline TupleTableSlot *
ExecProject(ProjectionInfo *projInfo)
{
ExprContext *econtext = projInfo->pi_exprContext;
ExprState *state = &projInfo->pi_state;
TupleTableSlot *slot = state->resultslot;
bool isnull;
/*
* Clear any former contents of the result slot. This makes it safe for
* us to use the slot's Datum/isnull arrays as workspace.
*/
ExecClearTuple(slot);
/* Run the expression, discarding scalar result from the last column. */
(void) ExecEvalExprSwitchContext(state, econtext, &isnull);
/*
* Successfully formed a result row. Mark the result slot as containing a
* valid virtual tuple (inlined version of ExecStoreVirtualTuple()).
*/
slot->tts_isempty = false;
slot->tts_nvalid = slot->tts_tupleDescriptor->natts;
return slot;
}
#endif
8、EvalPlanQualSetSlot
#define EvalPlanQualSetSlot(epqstate, slot) ((epqstate)->origslot = (slot))
9、ExecGetJunkAttribute
//獲取Junk中的某個屬性值
/*
* ExecGetJunkAttribute
*
* Given a junk filter's input tuple (slot) and a junk attribute's number
* previously found by ExecFindJunkAttribute, extract & return the value and
* isNull flag of the attribute.
*/
Datum
ExecGetJunkAttribute(TupleTableSlot *slot, AttrNumber attno,
bool *isNull)
{
Assert(attno > 0);
return slot_getattr(slot, attno, isNull);
}
10、DatumGetPointer
// 將無符號長整型轉換為指標然後進行傳遞
/*
* DatumGetPointer
* Returns pointer value of a datum.
*/
#define DatumGetPointer(X) ((Pointer) (X))
11、AttributeNumberIsValid
//判斷屬性(號)是否合法
/* ----------------
* support macros
* ----------------
*/
/*
* AttributeNumberIsValid
* True iff the attribute number is valid.
*/
#define AttributeNumberIsValid(attributeNumber) \
((bool) ((attributeNumber) != InvalidAttrNumber))
12、DatumGetHeapTupleHeader
#define DatumGetHeapTupleHeader(X) ((HeapTupleHeader) PG_DETOAST_DATUM(X))
13、HeapTupleHeaderGetDatumLength
#define HeapTupleHeaderGetDatumLength(tup) \
VARSIZE(tup)
14、ItemPointerSetInvalid
//塊號&塊內偏移設定為Invalid
/*
* ItemPointerSetInvalid
* Sets a disk item pointer to be invalid.
*/
#define ItemPointerSetInvalid(pointer) \
( \
AssertMacro(PointerIsValid(pointer)), \
BlockIdSet(&((pointer)->ip_blkid), InvalidBlockNumber), \
(pointer)->ip_posid = InvalidOffsetNumber \
)
15、ExecFilterJunk
//去掉所有的Junk屬性
/*
* ExecFilterJunk
*
* Construct and return a slot with all the junk attributes removed.
*/
TupleTableSlot *
ExecFilterJunk(JunkFilter *junkfilter, TupleTableSlot *slot)
{
TupleTableSlot *resultSlot;
AttrNumber *cleanMap;
TupleDesc cleanTupType;
int cleanLength;
int i;
Datum *values;
bool *isnull;
Datum *old_values;
bool *old_isnull;
/*
* Extract all the values of the old tuple.
*/
slot_getallattrs(slot);
old_values = slot->tts_values;
old_isnull = slot->tts_isnull;
/*
* get info from the junk filter
*/
cleanTupType = junkfilter->jf_cleanTupType;
cleanLength = cleanTupType->natts;
cleanMap = junkfilter->jf_cleanMap;
resultSlot = junkfilter->jf_resultSlot;
/*
* Prepare to build a virtual result tuple.
*/
ExecClearTuple(resultSlot);
values = resultSlot->tts_values;
isnull = resultSlot->tts_isnull;
/*
* Transpose data into proper fields of the new tuple.
*/
for (i = 0; i < cleanLength; i++)
{
int j = cleanMap[i];
if (j == 0)
{
values[i] = (Datum) 0;
isnull[i] = true;
}
else
{
values[i] = old_values[j - 1];
isnull[i] = old_isnull[j - 1];
}
}
/*
* And return the virtual tuple.
*/
return ExecStoreVirtualTuple(resultSlot);
}
16、ExecPrepareTupleRouting
//分割槽表使用,後續再行解析
/*
* ExecPrepareTupleRouting --- prepare for routing one tuple
*
* Determine the partition in which the tuple in slot is to be inserted,
* and modify mtstate and estate to prepare for it.
*
* Caller must revert the estate changes after executing the insertion!
* In mtstate, transition capture changes may also need to be reverted.
*
* Returns a slot holding the tuple of the partition rowtype.
*/
static TupleTableSlot *
ExecPrepareTupleRouting(ModifyTableState *mtstate,
EState *estate,
PartitionTupleRouting *proute,
ResultRelInfo *targetRelInfo,
TupleTableSlot *slot)
{
ModifyTable *node;
int partidx;
ResultRelInfo *partrel;
HeapTuple tuple;
/*
* Determine the target partition. If ExecFindPartition does not find a
* partition after all, it doesn't return here; otherwise, the returned
* value is to be used as an index into the arrays for the ResultRelInfo
* and TupleConversionMap for the partition.
*/
partidx = ExecFindPartition(targetRelInfo,
proute->partition_dispatch_info,
slot,
estate);
Assert(partidx >= 0 && partidx < proute->num_partitions);
/*
* Get the ResultRelInfo corresponding to the selected partition; if not
* yet there, initialize it.
*/
partrel = proute->partitions[partidx];
if (partrel == NULL)
partrel = ExecInitPartitionInfo(mtstate, targetRelInfo,
proute, estate,
partidx);
/*
* Check whether the partition is routable if we didn't yet
*
* Note: an UPDATE of a partition key invokes an INSERT that moves the
* tuple to a new partition. This check would be applied to a subplan
* partition of such an UPDATE that is chosen as the partition to route
* the tuple to. The reason we do this check here rather than in
* ExecSetupPartitionTupleRouting is to avoid aborting such an UPDATE
* unnecessarily due to non-routable subplan partitions that may not be
* chosen for update tuple movement after all.
*/
if (!partrel->ri_PartitionReadyForRouting)
{
/* Verify the partition is a valid target for INSERT. */
CheckValidResultRel(partrel, CMD_INSERT);
/* Set up information needed for routing tuples to the partition. */
ExecInitRoutingInfo(mtstate, estate, proute, partrel, partidx);
}
/*
* Make it look like we are inserting into the partition.
*/
estate->es_result_relation_info = partrel;
/* Get the heap tuple out of the given slot. */
tuple = ExecMaterializeSlot(slot);
/*
* If we're capturing transition tuples, we might need to convert from the
* partition rowtype to parent rowtype.
*/
if (mtstate->mt_transition_capture != NULL)
{
if (partrel->ri_TrigDesc &&
partrel->ri_TrigDesc->trig_insert_before_row)
{
/*
* If there are any BEFORE triggers on the partition, we'll have
* to be ready to convert their result back to tuplestore format.
*/
mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL;
mtstate->mt_transition_capture->tcs_map =
TupConvMapForLeaf(proute, targetRelInfo, partidx);
}
else
{
/*
* Otherwise, just remember the original unconverted tuple, to
* avoid a needless round trip conversion.
*/
mtstate->mt_transition_capture->tcs_original_insert_tuple = tuple;
mtstate->mt_transition_capture->tcs_map = NULL;
}
}
if (mtstate->mt_oc_transition_capture != NULL)
{
mtstate->mt_oc_transition_capture->tcs_map =
TupConvMapForLeaf(proute, targetRelInfo, partidx);
}
/*
* Convert the tuple, if necessary.
*/
ConvertPartitionTupleSlot(proute->parent_child_tupconv_maps[partidx],
tuple,
proute->partition_tuple_slot,
&slot,
true);
/* Initialize information needed to handle ON CONFLICT DO UPDATE. */
Assert(mtstate != NULL);
node = (ModifyTable *) mtstate->ps.plan;
if (node->onConflictAction == ONCONFLICT_UPDATE)
{
Assert(mtstate->mt_existing != NULL);
ExecSetSlotDescriptor(mtstate->mt_existing,
RelationGetDescr(partrel->ri_RelationDesc));
Assert(mtstate->mt_conflproj != NULL);
ExecSetSlotDescriptor(mtstate->mt_conflproj,
partrel->ri_onConflict->oc_ProjTupdesc);
}
return slot;
}
17、ExecInsert
//上一節已解讀
18、ExecUpdate/ExecDelete
//執行更新/刪除,在後續實驗Update/Delete時再行解析
19、fireASTriggers
//觸發執行語句後的觸發器(語句級)
/*
* Process AFTER EACH STATEMENT triggers
*/
static void
fireASTriggers(ModifyTableState *node)
{
ModifyTable *plan = (ModifyTable *) node->ps.plan;
ResultRelInfo *resultRelInfo = getTargetResultRelInfo(node);
switch (node->operation)
{
case CMD_INSERT:
if (plan->onConflictAction == ONCONFLICT_UPDATE)
ExecASUpdateTriggers(node->ps.state,
resultRelInfo,
node->mt_oc_transition_capture);
ExecASInsertTriggers(node->ps.state, resultRelInfo,
node->mt_transition_capture);
break;
case CMD_UPDATE:
ExecASUpdateTriggers(node->ps.state, resultRelInfo,
node->mt_transition_capture);
break;
case CMD_DELETE:
ExecASDeleteTriggers(node->ps.state, resultRelInfo,
node->mt_transition_capture);
break;
default:
elog(ERROR, "unknown operation");
break;
}
}
二、原始碼解讀
/* ----------------------------------------------------------------
* ExecModifyTable
*
* Perform table modifications as required, and return RETURNING results
* if needed.
* ----------------------------------------------------------------
*/
/*
輸入:
pstate-SQL語句執行計劃的State(各種狀態資訊)
輸出:
TupleTableSlot指標,儲存執行後Tuple的Slot指標
*/
static TupleTableSlot *
ExecModifyTable(PlanState *pstate)
{
ModifyTableState *node = castNode(ModifyTableState, pstate);//強制型別轉換為ModifyTableState型別
PartitionTupleRouting *proute = node->mt_partition_tuple_routing;//分割槽表執行
EState *estate = node->ps.state;//執行器Executor狀態
CmdType operation = node->operation;//命令型別
ResultRelInfo *saved_resultRelInfo;//結果RelationInfo
ResultRelInfo *resultRelInfo;//同上
PlanState *subplanstate;//子執行計劃狀態
JunkFilter *junkfilter;//無用屬性過濾器
TupleTableSlot *slot;//Tuple儲存的Slot指標
TupleTableSlot *planSlot;//Plan儲存的Slot指標
ItemPointer tupleid;//Tuple行指標
ItemPointerData tuple_ctid;//Tuple行指標資料(Block號、偏移等)
HeapTupleData oldtupdata;//原Tuple資料
HeapTuple oldtuple;//原Tuple資料指標
CHECK_FOR_INTERRUPTS();//檢查中斷訊號
/*
* This should NOT get called during EvalPlanQual; we should have passed a
* subplan tree to EvalPlanQual, instead. Use a runtime test not just
* Assert because this condition is easy to miss in testing. (Note:
* although ModifyTable should not get executed within an EvalPlanQual
* operation, we do have to allow it to be initialized and shut down in
* case it is within a CTE subplan. Hence this test must be here, not in
* ExecInitModifyTable.)
*/
if (estate->es_epqTuple != NULL)
elog(ERROR, "ModifyTable should not be called during EvalPlanQual");
/*
* If we've already completed processing, don't try to do more. We need
* this test because ExecPostprocessPlan might call us an extra time, and
* our subplan's nodes aren't necessarily robust against being called
* extra times.
*/
//已經完成,返回NULL
if (node->mt_done)
return NULL;
/*
* On first call, fire BEFORE STATEMENT triggers before proceeding.
*/
//語句級觸發器觸發
if (node->fireBSTriggers)
{
fireBSTriggers(node);
node->fireBSTriggers = false;
}
/* Preload local variables */
//預先構造本地變數
resultRelInfo = node->resultRelInfo + node->mt_whichplan;//設定正在操作的Relation,mt_whichplan是偏移
subplanstate = node->mt_plans[node->mt_whichplan];//執行計劃的State
junkfilter = resultRelInfo->ri_junkFilter;//額外(無價值)的資訊過濾器
/*
* es_result_relation_info must point to the currently active result
* relation while we are within this ModifyTable node. Even though
* ModifyTable nodes can't be nested statically, they can be nested
* dynamically (since our subplan could include a reference to a modifying
* CTE). So we have to save and restore the caller's value.
*/
//切換當前活躍的Relation
saved_resultRelInfo = estate->es_result_relation_info;
estate->es_result_relation_info = resultRelInfo;
/*
* Fetch rows from subplan(s), and execute the required table modification
* for each row.
*/
for (;;)
{
/*
* Reset the per-output-tuple exprcontext. This is needed because
* triggers expect to use that context as workspace. It's a bit ugly
* to do this below the top level of the plan, however. We might need
* to rethink this later.
*/
ResetPerTupleExprContext(estate);//設定上下文
planSlot = ExecProcNode(subplanstate);//獲取子Plan的Slot(插入資料操作返回值應為NULL)
if (TupIsNull(planSlot))//沒有執行計劃(執行計劃已全部完成)
{
/* advance to next subplan if any */
node->mt_whichplan++;//移至下一個執行Plan
if (node->mt_whichplan < node->mt_nplans)
{
resultRelInfo++;//切換至相應的Relation,如果是插入操作,只有一個
subplanstate = node->mt_plans[node->mt_whichplan];//切換至相應的子Plan狀態
junkfilter = resultRelInfo->ri_junkFilter;//切換至相應的junkfilter
estate->es_result_relation_info = resultRelInfo;//切換
EvalPlanQualSetPlan(&node->mt_epqstate, subplanstate->plan,
node->mt_arowmarks[node->mt_whichplan]);//設定子Plan
/* Prepare to convert transition tuples from this child. */
if (node->mt_transition_capture != NULL)
{
node->mt_transition_capture->tcs_map =
tupconv_map_for_subplan(node, node->mt_whichplan);//插入資料暫不使用
}
if (node->mt_oc_transition_capture != NULL)
{
node->mt_oc_transition_capture->tcs_map =
tupconv_map_for_subplan(node, node->mt_whichplan);//插入資料暫不使用
}
continue;
}
else
break;//所有的Plan均已執行,跳出迴圈
}
//存在子Plan
/*
* If resultRelInfo->ri_usesFdwDirectModify is true, all we need to do
* here is compute the RETURNING expressions.
*/
if (resultRelInfo->ri_usesFdwDirectModify)
{
Assert(resultRelInfo->ri_projectReturning);
/*
* A scan slot containing the data that was actually inserted,
* updated or deleted has already been made available to
* ExecProcessReturning by IterateDirectModify, so no need to
* provide it here.
*/
slot = ExecProcessReturning(resultRelInfo, NULL, planSlot);//FDW,直接返回
estate->es_result_relation_info = saved_resultRelInfo;
return slot;
}
EvalPlanQualSetSlot(&node->mt_epqstate, planSlot);//設定相應的Slot(子Plan Slot)
slot = planSlot;
tupleid = NULL;//Tuple ID
oldtuple = NULL;//原Tuple
if (junkfilter != NULL)//去掉廢棄的屬性
{
/*
* extract the 'ctid' or 'wholerow' junk attribute.
*/
if (operation == CMD_UPDATE || operation == CMD_DELETE)//更新或者刪除操作
{
char relkind;
Datum datum;
bool isNull;
relkind = resultRelInfo->ri_RelationDesc->rd_rel->relkind;
if (relkind == RELKIND_RELATION || relkind == RELKIND_MATVIEW)
{
datum = ExecGetJunkAttribute(slot,
junkfilter->jf_junkAttNo,
&isNull);
/* shouldn't ever get a null result... */
if (isNull)
elog(ERROR, "ctid is NULL");
tupleid = (ItemPointer) DatumGetPointer(datum);
tuple_ctid = *tupleid; /* be sure we don't free ctid!! */
tupleid = &tuple_ctid;
}
/*
* Use the wholerow attribute, when available, to reconstruct
* the old relation tuple.
*
* Foreign table updates have a wholerow attribute when the
* relation has a row-level trigger. Note that the wholerow
* attribute does not carry system columns. Foreign table
* triggers miss seeing those, except that we know enough here
* to set t_tableOid. Quite separately from this, the FDW may
* fetch its own junk attrs to identify the row.
*
* Other relevant relkinds, currently limited to views, always
* have a wholerow attribute.
*/
else if (AttributeNumberIsValid(junkfilter->jf_junkAttNo))
{
datum = ExecGetJunkAttribute(slot,
junkfilter->jf_junkAttNo,
&isNull);
/* shouldn't ever get a null result... */
if (isNull)
elog(ERROR, "wholerow is NULL");
oldtupdata.t_data = DatumGetHeapTupleHeader(datum);
oldtupdata.t_len =
HeapTupleHeaderGetDatumLength(oldtupdata.t_data);
ItemPointerSetInvalid(&(oldtupdata.t_self));
/* Historically, view triggers see invalid t_tableOid. */
oldtupdata.t_tableOid =
(relkind == RELKIND_VIEW) ? InvalidOid :
RelationGetRelid(resultRelInfo->ri_RelationDesc);
oldtuple = &oldtupdata;
}
else
Assert(relkind == RELKIND_FOREIGN_TABLE);
}
/*
* apply the junkfilter if needed.
*/
if (operation != CMD_DELETE)
slot = ExecFilterJunk(junkfilter, slot);//去掉廢棄的屬性
}
switch (operation)//根據操作型別,執行相應的操作
{
case CMD_INSERT://插入
/* Prepare for tuple routing if needed. */
if (proute)
slot = ExecPrepareTupleRouting(node, estate, proute,
resultRelInfo, slot);//準備相應的Tuple Slot
slot = ExecInsert(node, slot, planSlot,
estate, node->canSetTag);//執行插入
/* Revert ExecPrepareTupleRouting's state change. */
if (proute)
estate->es_result_relation_info = resultRelInfo;
break;
case CMD_UPDATE:
slot = ExecUpdate(node, tupleid, oldtuple, slot, planSlot,
&node->mt_epqstate, estate, node->canSetTag);
break;
case CMD_DELETE:
slot = ExecDelete(node, tupleid, oldtuple, planSlot,
&node->mt_epqstate, estate,
NULL, true, node->canSetTag,
false /* changingPart */ );
break;
default:
elog(ERROR, "unknown operation");
break;
}
/*
* If we got a RETURNING result, return it to caller. We'll continue
* the work on next call.
*/
if (slot)
{
estate->es_result_relation_info = saved_resultRelInfo;
return slot;
}
}
/* Restore es_result_relation_info before exiting */
estate->es_result_relation_info = saved_resultRelInfo;
/*
* We're done, but fire AFTER STATEMENT triggers before exiting.
*/
fireASTriggers(node);
node->mt_done = true;
//Insert語句,返回NULL
return NULL;
}
三、跟蹤分析
執行測試指令碼:
alter table t_insert alter column c1 type varchar(40);
alter table t_insert alter column c2 type varchar(40);
alter table t_insert alter column c3 type varchar(40);
testdb=# select pg_backend_pid();
pg_backend_pid
----------------
1570
(1 row)
testdb=# insert into t_insert values(13,'ExecModifyTable','ExecModifyTable','ExecModifyTable');
(掛起)
啟動gdb跟蹤:
[root@localhost ~]# gdb -p 1570
GNU gdb (GDB) Red Hat Enterprise Linux 7.6.1-100.el7
Copyright (C) 2013 Free Software Foundation, Inc.
...
(gdb) b ExecModifyTable
Breakpoint 1 at 0x6c2498: file nodeModifyTable.c, line 1915.
(gdb) c
Continuing.
Breakpoint 1, ExecModifyTable (pstate=0x2cde640) at nodeModifyTable.c:1915
1915 ModifyTableState *node = castNode(ModifyTableState, pstate);
#檢視引數
(gdb) p *pstate
#PlanState
$1 = {type = T_ModifyTableState, plan = 0x2ce66c8, state = 0x2cde2f0, ExecProcNode = 0x6c2485 <ExecModifyTable>, ExecProcNodeReal = 0x6c2485 <ExecModifyTable>, instrument = 0x0,
worker_instrument = 0x0, qual = 0x0, lefttree = 0x0, righttree = 0x0, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0, ps_ResultTupleSlot = 0x2cdf3f0, ps_ExprContext = 0x0, ps_ProjInfo = 0x0,
scandesc = 0x0}
#執行計劃Plan
(gdb) p *(pstate->plan)
$2 = {type = T_ModifyTable, startup_cost = 0, total_cost = 0.01, plan_rows = 1, plan_width = 298, parallel_aware = false, parallel_safe = false, plan_node_id = 0, targetlist = 0x0, qual = 0x0,
lefttree = 0x0, righttree = 0x0, initPlan = 0x0, extParam = 0x0, allParam = 0x0}
#執行計劃對應的執行環境(State)
(gdb) p *(pstate->state)
$3 = {type = T_EState, es_direction = ForwardScanDirection, es_snapshot = 0x2ccac80, es_crosscheck_snapshot = 0x0, es_range_table = 0x2ce6970, es_plannedstmt = 0x2ce6a40,
es_sourceText = 0x2c1bef0 "insert into t_insert values(13,'ExecModifyTable','ExecModifyTable','ExecModifyTable');", es_junkFilter = 0x0, es_output_cid = 0, es_result_relations = 0x2cde530,
es_num_result_relations = 1, es_result_relation_info = 0x0, es_root_result_relations = 0x0, es_num_root_result_relations = 0, es_tuple_routing_result_relations = 0x0, es_trig_target_relations = 0x0,
es_trig_tuple_slot = 0x2cdf4a0, es_trig_oldtup_slot = 0x0, es_trig_newtup_slot = 0x0, es_param_list_info = 0x0, es_param_exec_vals = 0x2cde500, es_queryEnv = 0x0, es_query_cxt = 0x2cde1e0,
es_tupleTable = 0x2cdeef0, es_rowMarks = 0x0, es_processed = 0, es_lastoid = 0, es_top_eflags = 0, es_instrument = 0, es_finished = false, es_exprcontexts = 0x2cde8a0, es_subplanstates = 0x0,
es_auxmodifytables = 0x0, es_per_tuple_exprcontext = 0x0, es_epqTuple = 0x0, es_epqTupleSet = 0x0, es_epqScanDone = 0x0, es_use_parallel_mode = false, es_query_dsa = 0x0, es_jit_flags = 0,
es_jit = 0x0}
#結果Tuple Slot
(gdb) p *(pstate->ps_ResultTupleSlot)
$6 = {type = T_TupleTableSlot, tts_isempty = true, tts_shouldFree = false, tts_shouldFreeMin = false, tts_slow = false, tts_tuple = 0x0, tts_tupleDescriptor = 0x2cdf3c0, tts_mcxt = 0x2cde1e0,
tts_buffer = 0, tts_nvalid = 0, tts_values = 0x2cdf450, tts_isnull = 0x2cdf450, tts_mintuple = 0x0, tts_minhdr = {t_len = 0, t_self = {ip_blkid = {bi_hi = 0, bi_lo = 0}, ip_posid = 0},
t_tableOid = 0, t_data = 0x0}, tts_off = 0, tts_fixedTupleDescriptor = true}
#繼續執行
#proute應為NULL
(gdb) p proute
$7 = (PartitionTupleRouting *) 0x0
#插入操作
(gdb) p operation
$9 = CMD_INSERT
#檢視本地變數
(gdb) p resultRelInfo
$11 = (ResultRelInfo *) 0x2cde530
(gdb) p *resultRelInfo
$12 = {type = T_ResultRelInfo, ri_RangeTableIndex = 1, ri_RelationDesc = 0x7f3c13f56150, ri_NumIndices = 1, ri_IndexRelationDescs = 0x2cde8d0, ri_IndexRelationInfo = 0x2cde8e8, ri_TrigDesc = 0x0,
ri_TrigFunctions = 0x0, ri_TrigWhenExprs = 0x0, ri_TrigInstrument = 0x0, ri_FdwRoutine = 0x0, ri_FdwState = 0x0, ri_usesFdwDirectModify = false, ri_WithCheckOptions = 0x0,
ri_WithCheckOptionExprs = 0x0, ri_ConstraintExprs = 0x0, ri_junkFilter = 0x0, ri_returningList = 0x0, ri_projectReturning = 0x0, ri_onConflictArbiterIndexes = 0x0, ri_onConflict = 0x0,
ri_PartitionCheck = 0x0, ri_PartitionCheckExpr = 0x0, ri_PartitionRoot = 0x0, ri_PartitionReadyForRouting = false}
(gdb) p subplanstate
$13 = (PlanState *) 0x2cdea10
(gdb) p *subplanstate
$14 = {type = T_ResultState, plan = 0x2cd21f8, state = 0x2cde2f0, ExecProcNode = 0x69a78b <ExecProcNodeFirst>, ExecProcNodeReal = 0x6c5094 <ExecResult>, instrument = 0x0, worker_instrument = 0x0,
qual = 0x0, lefttree = 0x0, righttree = 0x0, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0, ps_ResultTupleSlot = 0x2cdedc0, ps_ExprContext = 0x2cdeb20, ps_ProjInfo = 0x2cdef20, scandesc = 0x0}
(gdb) p *(subplanstate->plan)
$15 = {type = T_Result, startup_cost = 0, total_cost = 0.01, plan_rows = 1, plan_width = 298, parallel_aware = false, parallel_safe = false, plan_node_id = 1, targetlist = 0x2cd22f8, qual = 0x0,
lefttree = 0x0, righttree = 0x0, initPlan = 0x0, extParam = 0x0, allParam = 0x0}
(gdb) p junkfilter
$18 = (JunkFilter *) 0x830
(gdb) p *junkfilter
Cannot access memory at address 0x830
gdb) next
1974 saved_resultRelInfo = estate->es_result_relation_info;
(gdb)
1976 estate->es_result_relation_info = resultRelInfo;
(gdb)
1990 ResetPerTupleExprContext(estate);
(gdb)
1992 planSlot = ExecProcNode(subplanstate);
(gdb) p *planSlot
$19 = {type = T_Invalid, tts_isempty = false, tts_shouldFree = false, tts_shouldFreeMin = false, tts_slow = false, tts_tuple = 0x3000000000064, tts_tupleDescriptor = 0x2c1dcb8, tts_mcxt = 0x2c,
tts_buffer = 0, tts_nvalid = 0, tts_values = 0x0, tts_isnull = 0x0, tts_mintuple = 0x0, tts_minhdr = {t_len = 512, t_self = {ip_blkid = {bi_hi = 0, bi_lo = 0}, ip_posid = 57824}, t_tableOid = 0,
t_data = 0x3c}, tts_off = 47081160, tts_fixedTupleDescriptor = false}
(gdb) next
1994 if (TupIsNull(planSlot))
(gdb) p *planSlot
$20 = {type = T_TupleTableSlot, tts_isempty = false, tts_shouldFree = false, tts_shouldFreeMin = false, tts_slow = false, tts_tuple = 0x0, tts_tupleDescriptor = 0x2cdebb0, tts_mcxt = 0x2cde1e0,
tts_buffer = 0, tts_nvalid = 4, tts_values = 0x2cdee20, tts_isnull = 0x2cdee40, tts_mintuple = 0x0, tts_minhdr = {t_len = 0, t_self = {ip_blkid = {bi_hi = 0, bi_lo = 0}, ip_posid = 0},
t_tableOid = 0, t_data = 0x0}, tts_off = 0, tts_fixedTupleDescriptor = true}
(gdb) next
2027 if (resultRelInfo->ri_usesFdwDirectModify)
(gdb)
2043 EvalPlanQualSetSlot(&node->mt_epqstate, planSlot);
(gdb)
2044 slot = planSlot;
(gdb)
2046 tupleid = NULL;
(gdb)
2047 oldtuple = NULL;
(gdb)
2048 if (junkfilter != NULL)
(gdb)
2119 switch (operation)
(gdb) p junkfilter
$21 = (JunkFilter *) 0x0
(gdb) next
2123 if (proute)
(gdb)
2127 estate, node->canSetTag);
(gdb)
2126 slot = ExecInsert(node, slot, planSlot,
(gdb)
2129 if (proute)
(gdb) p *slot
Cannot access memory at address 0x0
(gdb) next
2151 if (slot)
(gdb)
2156 }
#進入第2輪迴圈
(gdb)
1990 ResetPerTupleExprContext(estate);
(gdb)
1992 planSlot = ExecProcNode(subplanstate);
(gdb) p *planSlot
$22 = {type = T_TupleTableSlot, tts_isempty = false, tts_shouldFree = true, tts_shouldFreeMin = false, tts_slow = false, tts_tuple = 0x2cdf550, tts_tupleDescriptor = 0x2cdebb0, tts_mcxt = 0x2cde1e0,
tts_buffer = 0, tts_nvalid = 1, tts_values = 0x2cdee20, tts_isnull = 0x2cdee40, tts_mintuple = 0x0, tts_minhdr = {t_len = 0, t_self = {ip_blkid = {bi_hi = 0, bi_lo = 0}, ip_posid = 0},
t_tableOid = 0, t_data = 0x0}, tts_off = 4, tts_fixedTupleDescriptor = true}
(gdb) next
1994 if (TupIsNull(planSlot))
(gdb)
1997 node->mt_whichplan++;
(gdb) next
1998 if (node->mt_whichplan < node->mt_nplans)
(gdb) p *node
$23 = {ps = {type = T_ModifyTableState, plan = 0x2ce66c8, state = 0x2cde2f0, ExecProcNode = 0x6c2485 <ExecModifyTable>, ExecProcNodeReal = 0x6c2485 <ExecModifyTable>, instrument = 0x0,
worker_instrument = 0x0, qual = 0x0, lefttree = 0x0, righttree = 0x0, initPlan = 0x0, subPlan = 0x0, chgParam = 0x0, ps_ResultTupleSlot = 0x2cdf3f0, ps_ExprContext = 0x0, ps_ProjInfo = 0x0,
scandesc = 0x0}, operation = CMD_INSERT, canSetTag = true, mt_done = false, mt_plans = 0x2cde850, mt_nplans = 1, mt_whichplan = 1, resultRelInfo = 0x2cde530, rootResultRelInfo = 0x0,
mt_arowmarks = 0x2cde868, mt_epqstate = {estate = 0x0, planstate = 0x0, origslot = 0x2cdedc0, plan = 0x2cd21f8, arowMarks = 0x0, epqParam = 0}, fireBSTriggers = false, mt_existing = 0x0,
mt_excludedtlist = 0x0, mt_conflproj = 0x0, mt_partition_tuple_routing = 0x0, mt_transition_capture = 0x0, mt_oc_transition_capture = 0x0, mt_per_subplan_tupconv_maps = 0x0}
//執行完畢,跳出迴圈
(gdb) next
2020 break;
(gdb) p *slot
Cannot access memory at address 0x0
(gdb) next
2159 estate->es_result_relation_info = saved_resultRelInfo;
(gdb) p saved_resultRelInfo
$24 = (ResultRelInfo *) 0x0
(gdb) next
2164 fireASTriggers(node);
(gdb) next
2166 node->mt_done = true;
(gdb)
#執行成功,返回NULL(Insert語句)
2168 return NULL;
四、小結
1、執行模型:INSERT/UPDATE/DELETE語句與SELECT使用了同一套的執行模型,如何區分和處理,需要進一步的深入理解;
2、執行狀態:PG在執行某個Statement時,維護了一系列的狀態,這些狀態的資料結構需要進一步的瞭解。
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/6906/viewspace-2374910/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- PostgreSQL 原始碼解讀(5)- 插入資料#4(ExecInsert)SQL原始碼
- PostgreSQL 原始碼解讀(7)- 插入資料#6(ExecProcNode和ExecPro...SQL原始碼
- PostgreSQL 原始碼解讀(1)- 插入資料#1SQL原始碼
- PostgreSQL 原始碼解讀(10)- 插入資料#9(ProcessQuery)SQL原始碼
- PostgreSQL 原始碼解讀(13)- 插入資料#12(PostgresMain)SQL原始碼AI
- PostgreSQL 原始碼解讀(8)- 插入資料#7(ExecutePlan)SQL原始碼
- PostgreSQL 原始碼解讀(2)- 插入資料#2(RelationPutHeapTuple)SQL原始碼APT
- PostgreSQL 原始碼解讀(9)- 插入資料#8(ExecutorRun和standard...SQL原始碼
- PostgreSQL 原始碼解讀(11)- 插入資料#10(PortalRunMulti和Por...SQL原始碼
- PostgreSQL 原始碼解讀(12)- 插入資料#11(exec_simple_query)SQL原始碼
- PostgreSQL 原始碼解讀(4)- 插入資料#3(heap_insert)SQL原始碼
- PostgreSQL 原始碼解讀(92)- 分割槽表#1(資料插入路由#1)SQL原始碼路由
- PostgreSQL 原始碼解讀(94)- 分割槽表#2(資料插入路由#2)SQL原始碼路由
- PostgreSQL 原始碼解讀(109)- WAL#5(相關資料結構)SQL原始碼資料結構
- PostgreSQL 原始碼解讀(3)- 如何閱讀原始碼SQL原始碼
- PostgreSQL 原始碼解讀(96)- 分割槽表#3(資料插入路由#3-獲取分割槽鍵值)SQL原始碼路由
- PostgreSQL 原始碼解讀(99)- 分割槽表#5(資料查詢路由#2-RelOptInfo數...SQL原始碼路由
- PostgreSQL 原始碼解讀(198)- 查詢#113(排序#6 - Tuplesortstate)SQL原始碼排序
- PostgreSQL 原始碼解讀(154)- 後臺程式#6(walsender#2)SQL原始碼
- PostgreSQL 原始碼解讀(241)- plpgsql(CreateFunction)SQL原始碼Function
- PostgreSQL 原始碼解讀(100)- 分割槽表#6(資料查詢路由#3-prune part...SQL原始碼路由
- PostgreSQL 原始碼解讀(234)- 查詢#127(NOT IN實現#5)SQL原始碼
- PostgreSQL 原始碼解讀(153)- 後臺程式#5(walsender#1)SQL原始碼
- PostgreSQL 原始碼解讀(254)- PG 14(Improving connection scalability)#6SQL原始碼
- PostgreSQL 原始碼解讀(21)- 查詢語句#6(PlannedStmt詳解-跟蹤分析)SQL原始碼
- PostgreSQL 原始碼解讀(240)- HTAB簡介SQL原始碼
- PostgreSQL 原始碼解讀(219)- Locks(Overview)SQL原始碼View
- PostgreSQL FSM(Free Space Map) 原始碼解讀SQL原始碼
- antd原始碼解讀(6)- Affix原始碼
- PostgreSQL 原始碼解讀(140)- Buffer Manager#5(BufTableInsert函式)SQL原始碼函式
- PostgreSQL 原始碼解讀(253)- PG 14(Improving connection scalability)#5SQL原始碼
- PostgreSQL 原始碼解讀(141)- Buffer Manager#6(Clock Sweep演算法)SQL原始碼演算法
- PostgreSQL 原始碼解讀(20)- 查詢語句#5(查詢樹Query詳解)SQL原始碼
- PostgreSQL 原始碼解讀(112)- WAL#8(XLogCtrl資料結構)SQL原始碼GC資料結構
- PostgreSQL 原始碼解讀(108)- 後臺程式#1(PGPROC資料結構)SQL原始碼資料結構
- Redux原始碼解讀--(5)createStoreRedux原始碼
- PostgreSQL 原始碼解讀(244)- plpgsql(CreateFunction-ProcedureCreate)SQL原始碼Function
- PostgreSQL 原始碼解讀(221)- Locks(PROCLOCK Struct)SQL原始碼Struct