簡述
本文主要記錄 Assimp庫的編譯和使用,可能會有不準確的地方,還望多多指正共同學習~
Assimp是Open Asset Import Library(開放的資產匯入庫)的縮寫。Assimp能夠匯入很多種不同的模型檔案格式(並也能夠匯出部分的格式),它會將所有的模型資料載入至Assimp的通用資料結構中
Assimp編譯
這裡是庫的github地址Assimp,下載下來 我們還要編譯成iOS可用的庫(這裡踩坑不少/(ㄒoㄒ)/~~)
配置CMAKE環境
CMake是個開源的跨平臺自動化建構系統,想要編譯Assimp 先要配置好它~ CMake官網 在官網下載CMake
然後將Cmake連結至終端
sudo "/Applications/CMake.app/Contents/bin/cmake-gui" --install
複製程式碼
編譯 Assimp.a
切換至目標路徑
執行下面命令~
//將你需要支援的架構輸入 一般就是X86 和 arm64
./build.sh --stdlib=libc++ --archs="arm64 x86_64"
複製程式碼
這是你的 lib資料夾下就是這個樣子的~
但是這樣子 還是不能在iOS上用的哦~ 因為 XML.a
只支援 X86架構~ 我們還需要額外編譯它
XML.a
這時就要使用CMake客戶端了~ 建立一個空的build資料夾~,使用Xcode 預設配置生成~
這時就根據需要編譯出自己需要的靜態庫即可了~~
Assimp使用
模型結構
當Assimp載入模型時,會將模型資料載入到Scene(場景)物件中.
Scene中會有一個Mesh(網格)物件,在Mesh中包含著渲染所需的所有資料,如頂點,法向量,紋理座標…
在Mesh中包含一個Material物件,其中是關於材質的資料(鏡面貼圖,漫反射貼圖,法向量貼圖….)
在Mesh中還包含了許多Face,Face其實是指物體的渲染圖元,一個麵包含了組成圖元的頂點索引(這裡其實就相當於之前講到的EBO)
Scene中會包含一個根節點,在根節點之下會有很多子節點~節點中有指向Mesh中資料的索引
所以我們需要做的就是將Scene中的節點遍歷,然後將節點中的資料提取出來,以適合的格式輸入到著色器中~~(๑•ᴗ•๑)
程式碼
定義 Mesh類 和 Model類
Mesh類對應每個節點的網格資料,Model則對應Scene物件~
我展示的程式碼主要是和Assimp相關的內容~ 也就是如何從模型中提取需要的資料,其他一些常規地方我就不浪費篇幅了~(๑•ᴗ•๑)
標頭檔案
#include "assimp/Importer.hpp"
#include "assimp/scene.h"
#include "assimp/postprocess.h"
複製程式碼
屬性
//頂點
struct Vertex {
glm::vec3 Position;
glm::vec3 Normal;
glm::vec2 TexCoords;
};
struct Vertex {
glm::vec3 Position;
glm::vec3 Normal;
glm::vec2 TexCoords;
};
class Mesh {
std::vector<Vertex> vertices; //頂點
std::vector<unsigned int> indices; //索引
std::vector<Texture> textures; //紋理
unsigned int VAO, VBO, EBO;
}
class Model{
std::vector<Texture> textures_loaded; //緩衝紋理,避免多次載入
std::vector<Mesh> meshes; //節點資料陣列
std::string directory; //載入路徑
}
複製程式碼
載入Scene
遍歷根節點及其下屬所有子節點
Assimp::Importer import;
//獲取Scene
const aiScene *scene = import.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs);
if(!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode)
{
printf("ERROR::ASSIMP:: %s",import.GetErrorString());
return;
}
directory = path.substr(0, path.find_last_of(`/`));
processNode(scene->mRootNode, scene);
複製程式碼
ReadFile
將指定路徑的模型載入,Path為路徑,後面的是載入時的額外處理
aiProcess_Triangulate
將載入的圖元變換為三角形
aiProcess_FlipUVs
翻轉紋理座標Y軸(OpenGL的紋理Y軸是翻的~)
aiProcess_GenNormals
若模型不包含法向量的話,就為每個頂點建立法線
aiProcess_SplitLargeMeshes
將較大的網格分割為較小的網格(當渲染有最大頂點數量要求時)
aiProcess_OptimizeMeshes
將較小的網格們拼接為較大的一個網格(減少繪製呼叫)
指令大全~~
void processNode(aiNode *node, const aiScene *scene){
//提取節點資料~
for(unsigned int i = 0; i < node->mNumMeshes; i++)
{
aiMesh *mesh = scene->mMeshes[node->mMeshes[i]];
meshes.push_back(processMesh(mesh, scene));
}
//遞迴遍歷
for(unsigned int i = 0; i < node->mNumChildren; i++)
{
processNode(node->mChildren[i], scene);
}
}
複製程式碼
提取節點網格資料
Mesh processMesh(aiMesh *mesh, const aiScene *scene) {
//需要提取的資料~
std::vector<Vertex> vertices;
std::vector<unsigned int> indices;
std::vector<Texture> textures;
//將頂點資料提取
for(unsigned int i = 0; i < mesh->mNumVertices; i++)
{
Vertex vertex;
glm::vec3 vector;
// positions
vector.x = mesh->mVertices[i].x;
vector.y = mesh->mVertices[i].y;
vector.z = mesh->mVertices[i].z;
vertex.Position = vector;
// normals
vector.x = mesh->mNormals[i].x;
vector.y = mesh->mNormals[i].y;
vector.z = mesh->mNormals[i].z;
vertex.Normal = vector;
if(mesh->mTextureCoords[0]) {
glm::vec2 vec;
vec.x = mesh->mTextureCoords[0][i].x;
vec.y = mesh->mTextureCoords[0][i].y;
vertex.TexCoords = vec;
}
else
vertex.TexCoords = glm::vec2(0.0f, 0.0f);
vertices.push_back(vertex);
}
//將索引資料提取
for(unsigned int i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
for(unsigned int j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
//將紋理資料提取(漫反射紋理,鏡面紋理...)
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
std::vector<Texture> diffuseMaps = loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
std::vector<Texture> specularMaps = loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
std::vector<Texture> normalMaps = loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal");
textures.insert(textures.end(), normalMaps.begin(), normalMaps.end());
std::vector<Texture> heightMaps = loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height");
textures.insert(textures.end(), heightMaps.begin(), heightMaps.end());
return Mesh(vertices, indices, textures);
}
複製程式碼
std::vector<Texture> loadMaterialTextures(aiMaterial *mat, aiTextureType type,std::string typeName) {
std::vector<Texture> textures;
for(unsigned int i = 0; i < mat->GetTextureCount(type); i++)
{
aiString str;
mat->GetTexture(type, i, &str);
//檢查紋理是否之前已經載入過,
bool skip = false;
for(unsigned int j = 0; j < textures_loaded.size(); j++)
{
if(std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0)
{
textures.push_back(textures_loaded[j]);
skip = true; // a texture with the same filepath has already been loaded, continue to next one. (optimization)
break;
}
}
if(!skip)
{
//若紋理未載入,則載入
Texture texture;
texture.id = TextureFromFile(str.C_Str(), this->directory);
texture.type = typeName;
texture.path = str.C_Str();
textures.push_back(texture);
textures_loaded.push_back(texture);
}
}
return textures;
}
//將紋理載入,輸入到著色器
unsigned int TextureFromFile(const char *path, const std::string &directory, bool gamma)
{
std::string filename = std::string(path);
filename = directory + `/` + filename;
unsigned int textureID;
glGenTextures(1, &textureID);
int width, height, nrComponents;
unsigned char *data = stbi_load(filename.c_str(), &width, &height, &nrComponents, 0);
if (data)
{
GLenum format;
if (nrComponents == 1)
format = GL_RED;
else if (nrComponents == 3)
format = GL_RGB;
else if (nrComponents == 4){
for (int i = 0; i<width*height; i++ ) {
char tR = data[i*4+2];
data[i*4+2] = data[i*4];
data[i*4] = tR;
}
format = GL_RGBA;
}
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
}
else
{
//std::cout << "Texture failed to load at path: " << path << std::endl;
printf("Texture failed to load at path: %s",path);
stbi_image_free(data);
}
return textureID;
}
複製程式碼
注意
在載入模型資料時,需要注意的是 模型並不一定會提供完整的貼圖,例如 有的簡單模型,建模師有可能不會為其新增貼圖,而是給模型設定一種高光材質,以節約資源.這時 材質資訊儲存在mtl檔案中,而且還有可能連mtl檔案也沒有, 這時 則需要我們新增預設材質~
.mtl檔案(Material Library File)是材質庫檔案,描述的是物體的材質資訊,ASCII儲存,任何文字編輯器可以將其開啟和編輯。一個.mtl檔案可以包含一個或多個材質定義,對於每個材質都有其顏色,紋理和反射貼圖的描述,應用於物體的表面和頂點。想詳細瞭解的朋友們可以看這裡.obj檔案格式與.mtl檔案格式
繪製
繪製就很簡單了,將提取出來的每個網格的資料 傳入著色器就好~
void Draw(GLuint program){
glBindVertexArray(VAO);
unsigned int diffuseNr = 1;
unsigned int specularNr = 1;
for(unsigned int i = 0; i < textures.size(); i++)
{
glActiveTexture(GL_TEXTURE0 + i);
std::stringstream ss;
std::string number;
std::string name = textures[i].type;
if(name == "texture_diffuse")
ss << diffuseNr++;
else if(name == "texture_specular")
ss << specularNr++;
number = ss.str();
glUniform1i(glGetUniformLocation(program, ("material." + name + number).c_str()), i);
glBindTexture(GL_TEXTURE_2D, textures[i].id);
}
glActiveTexture(GL_TEXTURE0);
glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0);
}
複製程式碼
在著色器中,也就是將獲取的頂點資料 和 紋理 按照需要進行輸出就好了~ 和 繪製木箱子無異~
結尾
我對這一塊的內容也並不是十分熟練,所以Assimp使用這裡有些粗略,以後有啥新的收穫也會補上~ 倒是Assimp庫編譯那裡 我是踩了好多坑~ 最後才弄好的~
模型大家可以到這裡下載一些免費(難免有坑的)模型試一試 Free3D
希望能幫到大家吧,要是文中有不對的地方 還望多多指教呀~ 共同學習(๑•ᴗ•๑)