本篇為RSA進階篇,繼RSA入門
[RSA3]P1(擴充套件歐幾里得)
題目
from Crypto.Util.number import *
flag = b'******'
m1 = bytes_to_long(flag[:len(flag)//2])
m2 = bytes_to_long(flag[len(flag)//2:])
assert 18608629446895353521310408885845687520013234781800558*m1-14258810472138345414555137649316815272478951117940067*m2 == 1
我的解答:
本題非常直白,將flag分成兩部分後給了一個約束式,讓我們求解flag。
約束是一個二元一次方程,顯然我們知道二元一次方程在實數域上會有無數個解,但注意我們很少會在實數域上進行運算,如之前所說,我們所有的操作都是在一個整數域或者有限域(可以理解為取模的域)中進行運算。而這裡我們便有一個非常常用的裴蜀定理
裴蜀定理:對於整數域中的不定方程 ax + by = m 其有解的充要條件為gcd(a,b)∣m
顯然我們可以計算發現題目中約束的兩個值其最大公因數為1,所以我們是可以算出未知數的,我們可以利用擴充套件歐幾里得演算法進行該約束方程
import gmpy2
from Crypto.Util.number import *
a = 18608629446895353521310408885845687520013234781800558
b = 14258810472138345414555137649316815272478951117940067
print(gmpy2.gcd(a,b))
#1
之前我們都是將extgcd
作為黑盒來進行使用,現在我們便要學習其原理,而要明白擴充套件歐幾里得我們則需要先了解歐幾里得演算法,即用來求解最大公因數的輾轉相除法
def gcd(a, b):
return a if b == 0 else gcd(b, a%b)
舉個例子:a=2 b=1 如果b==0那麼返回a否則一直返回gcd()函式輾轉下去直到b==0。 其實2和1的最大公因數是1 因此a%b=0 b=1 返回gcd(1,0)再次帶入函式滿足if b==0 因此返回1即為所求。就這麼個意思。。也是很好理解。
以上是歐幾里得演算法的一個Python實現,其原理利用了遞迴的思想,這是程式設計中常用的一種思想手段
- 設立一個邊界值。
- 設立遞迴量,並且不斷的歸約。
遞迴的本質思想還是歸約,即把一個問題轉化為另一個較簡單的問題,如果那個較簡單的問題還是問題本身則我們就可以稱為遞迴,在這裡邊界條件是gcd(a, 0) = a
,而歸約過程則是當不為邊界值時,設最大共因數為g,並設a>b此時有
a=k1b+r1
則可以將問題轉化為gcd(b, a%b)
,即
a=b
b=r1
因為g∣b,g∣a,則有r1/g=a/g−k1b/g,即說明r1/g是整數,有g∣r1,到這裡我們證明了b,a%b
的最大公因數還是g,也就說明了計算gcd(a,b)
和計算gcd(b,a%b)
等價,所以我們便可以按照此方式不斷的進行歸約最終直到到達邊界值即r1=0時,則說明此時的b就是原式的最大公因數。
現在來考慮擴充套件歐幾里得,在剛才我們所說的邊界值(a=g,b=0)時有
a⋅1+b⋅0=gcd(a,b)
即此時解為x=1,y=0,這同樣也是擴歐的邊界條件,那麼我們從邊界值往回看代入上面我們所述的等價關係中可以得到
ax1+by1=gcd(a,b)
b⋅x2+(a%b)y2=gcd(b,a%b)
那麼現在我們要做的就是尋找這兩個式子中的轉移關係,從而找到x1和x2的聯絡,y1和y2的聯絡,從而和歐幾里得一樣寫出轉移式便可以得到完整實現了。
我們知道a mod b=a−(a/b)b,代入上述關係中則有
g=bx2+(a−(a/b)b)y2
=bx2+ay2−(a/b)by2
=ay2+b(x2−(a/b)y2)
顯然我們便得到了關係式
x1=y2
y1=x2−(a/b)y2
程式碼實現為
def extgcd(a, b):
if b == 0:
return a, 1, 0
g, x, y = extgcd(b, a%b)
return g, y, x - (a//b)*y
本文大費篇幅的講解擴充套件歐幾里得的作用是希望大家能瞭解這種程式設計思維,瞭解其演算法的本質,隨著學習越來越深,我們會發現很多問題都是透過找到其關係式歸約成較為簡單的問題進行計算,而計算的核心便是邊界條件和轉移方程。
後面的過程便很簡單了,我們透過extgcd直接求解即可。不過這裡還有個值得注意的是你會發現得到的值不是flag,因為(x+kb,y+ka)依然是原方程的解,所以我們得到的只是一組解,後續我們可以透過遍歷的手段找到我們想要的那一組即可。
exp:
from Crypto.Util.number import *
def extgcd(a, b):
if b == 0:
return a, 1, 0
g, x, y = extgcd(b, a%b)
return g, y, x - (a//b)*y
solve = extgcd(18608629446895353521310408885845687520013234781800558,14258810472138345414555137649316815272478951117940067)
a = abs(solve[1])
b = abs(solve[2])
for _ in range(10):
b += 18608629446895353521310408885845687520013234781800558
a += 14258810472138345414555137649316815272478951117940067
if b'NSSCTF' in long_to_bytes(a):
print(long_to_bytes(a)+long_to_bytes(b))
break
#NSSCTF{4cdc3370-b5db-4f88-bd95-a43d232a9af9}
[RSA3]P2(高次Rabin)
題目
from Crypto.Util.number import *
from gmpy2 import *
flag = b'NSSCTF{******}'
p = getPrime(256)
q = getPrime(256)
assert p%4 == 3 and q%4 == 3
n = p*q
e = 4
m = bytes_to_long(flag)
c = powmod(m, e, n)
print(f'p = {p}')
print(f'q = {q}')
print(f'e = {e}')
print(f'c = {c}')
'''
p = 59146104467364373868799971411233588834178779836823785905639649355194168174467
q = 78458230412463183024731868185916348923227701568297699614451375213784918571587
e = 4
c = 1203393285445255679455330581174083350744414151272999693874069337386260499408999133487149585390696161509841251500970131235102423165932460197848215104528310
'''
我的解答:
本題是Rabin攻擊的進階題目,e從普通Rabin攻擊中的2變成了4
其實很簡單,我們要的是e=2,那麼就把m4看成(m2)2即可,然後我們需要解兩次Rabin一共會得到16組解,當然這裡面只有一組解是我們想要的
from Crypto.Util.number import *
p = 59146104467364373868799971411233588834178779836823785905639649355194168174467
q = 78458230412463183024731868185916348923227701568297699614451375213784918571587
e = 4
c = 1203393285445255679455330581174083350744414151272999693874069337386260499408999133487149585390696161509841251500970131235102423165932460197848215104528310
n = p*q
def rabin(c):
mp = pow(c, (p + 1) // 4, p)
mq = pow(c, (q + 1) // 4, q)
yp = inverse(p,q)
yq = inverse(q,p)
r = (yp * p * mq + yq * q * mp) % n
r_ = n - r
s = (yp * p * mq - yq * q * mp) % n
s_ = n - s
return r,r_,s,s_
c_list = rabin(c)
for c in c_list:
cc = rabin(c)
for c in cc:
flag = long_to_bytes(c)
if b'NSSCTF' in flag:
print(flag)
完成本題後考慮完成[NSSRound#11 Basic]ez_signin,本題的e更大,需要更多次Rabin,但其思想依然一樣,一層一層的剝開即可,主要是考察程式碼編寫能力,再兩層時我們可以手動兩次rabin,但多層時則需要考慮將重複的過程變成迴圈呼叫。
練習題附件:
from Crypto.Util.number import *
from secret import flag
p = getPrime(512)
q = getPrime(512)
assert p > q
n = p*q
e = 65536
m = bytes_to_long(flag)
num1 = (pow(p,e,n)-pow(q,e,n)) % n
num2 = pow(p-q,e,n)
c = pow(m,e,n)
print("num1=",num1)
print("num2=",num2)
print("n=",n)
print("c=",c)
我的解答:
看程式碼我們來分析一下:
num1 = pe - qe mod n
num2 = (p-q)e mod n
展開二項式,可消除有關pq的式子得到:
num2 = pe + qe mod n
num1 + num2可得:
num1 + num2 = 2 * pe mod n
可知num1 + num2與n存在最大公約數p,即
p = gmpy2.gcd(num1 + num2, n) q = n // p
根據上述資訊可求出p,而我們還發現e = 65536 = 216 看看是否滿足羅賓演算法(p和q分別對4求餘都餘3),我們先列印出p和q,連線靶機獲取資料
from Crypto.Util.number import *
import gmpy2
num1= 59840554996025694197419837189299767141940919715083637654590543115482567229570169968180333006737083033173640866902902364360226289191009120560048572276043297679698270018763241430670630221816123229643718524930305733411995058321246483012416783450164505404278181286375702214782638882589215047041540643751820438650
num2= 70301070373634513926049524952229729017142862474697524234482038124399214326930000632015602808726712181546092289090230189591723263274465552548769021531533175648839430913528523763760597918547982074144314182823302433073954446756980384446970832874273337024068865548607438142897707361226641950883893016125627317925
n= 83259153787408481802298172628070538063180243279118822048895436129104646961832489700344990509641075437593032619810941629193033330438750693874646304836611824526477669709259763560237509463402912800036782645033069044253256413587810472745029639201991765028462888276108946164222702893043130223954537803720769813961
c= 58268127136484324736541152689050543502588381405979475157975221269010580661696065122756953881557554545000538254945151815327795117708948096914509260945996365333557981515911235515197880724674416027760147441440391678566669385473579785994196434388385255047471922757636404487092029602174375073292006920000880956054
p = gmpy2.gcd(num1+num2,n)
q = n//p
print(p)
print(q)
p = 11163366577405559823179946410328743608623660246099475332229857780096673033301409127248470264100525259289819163831489656616010705381426665456453385258652459
q = 7458247761559977316768147289656358304802701515829268324407017064749170626211829946444531012079347474791382886095795760284151293736859044682373662227548379
pp = p%4
qq = q%4
print(pp)
print(qq)
#3
#3
可以看出餘數都是3,p和q都屬於4k+3型素數。因此就好辦了,直接16次羅賓演算法即可
exp:
from Crypto.Util.number import *
import gmpy2
num1= 59840554996025694197419837189299767141940919715083637654590543115482567229570169968180333006737083033173640866902902364360226289191009120560048572276043297679698270018763241430670630221816123229643718524930305733411995058321246483012416783450164505404278181286375702214782638882589215047041540643751820438650
num2= 70301070373634513926049524952229729017142862474697524234482038124399214326930000632015602808726712181546092289090230189591723263274465552548769021531533175648839430913528523763760597918547982074144314182823302433073954446756980384446970832874273337024068865548607438142897707361226641950883893016125627317925
n= 83259153787408481802298172628070538063180243279118822048895436129104646961832489700344990509641075437593032619810941629193033330438750693874646304836611824526477669709259763560237509463402912800036782645033069044253256413587810472745029639201991765028462888276108946164222702893043130223954537803720769813961
c= 58268127136484324736541152689050543502588381405979475157975221269010580661696065122756953881557554545000538254945151815327795117708948096914509260945996365333557981515911235515197880724674416027760147441440391678566669385473579785994196434388385255047471922757636404487092029602174375073292006920000880956054
p = gmpy2.gcd(num1+num2,n)
q = n//p
#print(p)
#print(q)
#p = 11163366577405559823179946410328743608623660246099475332229857780096673033301409127248470264100525259289819163831489656616010705381426665456453385258652459
#q = 7458247761559977316768147289656358304802701515829268324407017064749170626211829946444531012079347474791382886095795760284151293736859044682373662227548379
#pp = p%4
#qq = q%4
#print(pp)
#print(qq)
#3
#3
p = 11163366577405559823179946410328743608623660246099475332229857780096673033301409127248470264100525259289819163831489656616010705381426665456453385258652459
q = 7458247761559977316768147289656358304802701515829268324407017064749170626211829946444531012079347474791382886095795760284151293736859044682373662227548379
e = 65536
c = 58268127136484324736541152689050543502588381405979475157975221269010580661696065122756953881557554545000538254945151815327795117708948096914509260945996365333557981515911235515197880724674416027760147441440391678566669385473579785994196434388385255047471922757636404487092029602174375073292006920000880956054
n = p*q
def rabin(c):
mp = pow(c, (p + 1) // 4, p)
mq = pow(c, (q + 1) // 4, q)
yp = inverse(p,q)
yq = inverse(q,p)
r = (yp * p * mq + yq * q * mp) % n
r_ = n - r
s = (yp * p * mq - yq * q * mp) % n
s_ = n - s
return r,r_,s,s_
cs = [c] #把c放入列表裡面
#[58268127136484324736541152689050543502588381405979475157975221269010580661696065122756953881557554545000538254945151815327795117708948096914509260945996365333557981515911235515197880724674416027760147441440391678566669385473579785994196434388385255047471922757636404487092029602174375073292006920000880956054]
#迴圈16次羅賓演算法
for i in range(16):
ps = [] #設定一個空列表用來存放最後結果
for c2 in cs:
r,r_,s,s_ = rabin(c2)
if r not in ps:
ps.append(r)
if r_ not in ps:
ps.append(r_)
if s not in ps:
ps.append(s)
if s_ not in ps:
ps.append(s_)
# print(ps)
cs = ps
for i in range(len(cs)):
print(long_to_bytes(cs[i]))
#NSSCTF{ec79d1a7-edf4-4814-8404-de681b8358db}
[RSA3]P3(連分數利用)
題目
from Crypto.Util.number import *
from gmpy2 import *
flag = b'NSSCTF{******}'
m1 = bytes_to_long(flag[:len(flag)//2])
m2 = bytes_to_long(flag[len(flag)//2:])
p1 = getPrime(1024)
p2 = next_prime(p1)
q1 = getPrime(400)
q2 = getPrime(400)
n1 = p1 * p1 * q1
n2 = p2 * p2 * q2
e1 = getPrime(128)
e2 = getPrime(128)
c1 = pow(m1, e1, n1)
c2 = pow(m2, e2, n2)
print(f'n1 = {n1}')
print(f'e1 = {e1}')
print(f'c1 = {c1}')
print(f'n2 = {n2}')
print(f'e2 = {e2}')
print(f'c2 = {c2}')
'''
n1 = 45965238261145848306223556876775641787109249067253988455950651872774381183888979035386577960806305813634216583223483001245996467366520071511779063266315692543617195166613592991812117446772937889819643718423377609566597230873623011099295202599905646652692946273375405832062164263711151844949794774229886016858313299259387152937467743637367261734624060321171598033647661809876890249035267180368762739600552966699295210431508056693524383116052539072065535970720901196322942269916455391238409489616842687658335666652878840458263998780783865062993401055465701207886230787204008073260653659510197069116237460322442433331870944968133645513020531983926180514313028320422449103156746225574626841023639595418255472716267486241462968101152032898749
e1 = 279586443815379026299414729432860797623
c1 = 11515318475856179010858377918435934663304239594599788732135470038988222237790835017056954077794506499559722814863240838882673078330335616745578747265404229105473136943188301293198548838105990504750972653445744347121859396823995101611868191609259910876207038154174100742978387355304521374228562928260479446249263909934393657537918407756957032700052269827171045167752168509783885071211516601218892308228572735545579606908430615218499620619028799140945676768341492724044499209913045110359935325510223652935426973411960865908064824205626343685369866932545651037748553442488682593143020861196339307665638704485958986411837014559504992818255506454051842453553265179370878637153602580071152915165775491633322055360737581203750897698007951117808
n2 = 25459365600568360055376316722846535809281537088824978187355135247184417413329012865221456308642116409716822227032113740366024809533942721286337697830775221199570509665320400376959076685728357107457862901087218522281771857981155239522807950207375964963527837592797198372303427082343684305143238075402697262610809363109748984974325271762535573995993132076293275456692621516174749076897962348000698039074721998780555541905706268579496243099763776676950336105074846695227221690550755501320117554250942600626927600558489780841103863110357615957088709321079080707735028039675102383525496673233697130053936053431067133520717494376952763684807635780416860233261892013531534059267366382617635000415723745274490604551078385404286689447761642713963
e2 = 249615977162294580923494787210301891647
c2 = 24544357952213952357056140974408354173440635791397720610932999473703241918398814255275362994811954064820912468224131892551724930677715676493892869921426790840199600798807085779112854131346378899855545138289836687048918660685766286852276199524789699567994154833159365800848535248059731927121269157841084905465048764152977389352561685340108834453730139893330210765986258703154334901509553990091592209268471594519326651914685843021165854654380119091009831071244459145750976193183411590207529489774630266528538380011000213950174694472355034075543687572037516433204151217601537869823709241020510051494619335852686100897182065588340025334679570763716458250649152257797833022586793526594784648938165537701256313728194521212887453997160504204832
'''
我的解答:
本題給了兩組公鑰和密文,之前我們學習過多組公鑰時可以考慮共享素數,但從程式碼上來看可以發現他們使用的都是不一樣的素數,但我們又會發現這些素數之間並不是完全獨立的。
p2是p1的下一個素數,或者換種說法說,他們離得非常近,在考慮一下我們曾經所學過的攻擊關於非常近的無外乎是p-q過小,我們可以利用費馬分解進行操作,但這裡兩個非常近的素數並沒有進行乘積,而是分開和其他數進行乘積。還有一種情況便是維納攻擊,在維納攻擊中我們說是當e和n非常接近時便可以使用,那這裡和維納攻擊有什麼關係呢?
實際上我們這裡將要了解維納攻擊的核心:連分數定理
連分數定理:當a和b滿足
時,則a/b是x的一個連分數近似。
連分數近似則代表我們可以對x進行連分數展開,其中的某個近似數便是a/b。
本定理便是我們的理論支撐,那麼現在我們有了兩個很近的數n1和n2,如果我們對這兩個數進行連分數展開,我們的預期結果便是可以在展開的過程中得到p1和p2。當然我們現在還無法判斷他們之間的關係是否符合上式,我們只能先進行展開,隨後進行驗證
from Crypto.Util import number
import gmpy2
n1 = 45965238261145848306223556876775641787109249067253988455950651872774381183888979035386577960806305813634216583223483001245996467366520071511779063266315692543617195166613592991812117446772937889819643718423377609566597230873623011099295202599905646652692946273375405832062164263711151844949794774229886016858313299259387152937467743637367261734624060321171598033647661809876890249035267180368762739600552966699295210431508056693524383116052539072065535970720901196322942269916455391238409489616842687658335666652878840458263998780783865062993401055465701207886230787204008073260653659510197069116237460322442433331870944968133645513020531983926180514313028320422449103156746225574626841023639595418255472716267486241462968101152032898749
e1 = 279586443815379026299414729432860797623
c1 = 11515318475856179010858377918435934663304239594599788732135470038988222237790835017056954077794506499559722814863240838882673078330335616745578747265404229105473136943188301293198548838105990504750972653445744347121859396823995101611868191609259910876207038154174100742978387355304521374228562928260479446249263909934393657537918407756957032700052269827171045167752168509783885071211516601218892308228572735545579606908430615218499620619028799140945676768341492724044499209913045110359935325510223652935426973411960865908064824205626343685369866932545651037748553442488682593143020861196339307665638704485958986411837014559504992818255506454051842453553265179370878637153602580071152915165775491633322055360737581203750897698007951117808
n2 = 25459365600568360055376316722846535809281537088824978187355135247184417413329012865221456308642116409716822227032113740366024809533942721286337697830775221199570509665320400376959076685728357107457862901087218522281771857981155239522807950207375964963527837592797198372303427082343684305143238075402697262610809363109748984974325271762535573995993132076293275456692621516174749076897962348000698039074721998780555541905706268579496243099763776676950336105074846695227221690550755501320117554250942600626927600558489780841103863110357615957088709321079080707735028039675102383525496673233697130053936053431067133520717494376952763684807635780416860233261892013531534059267366382617635000415723745274490604551078385404286689447761642713963
e2 = 249615977162294580923494787210301891647
c2 = 24544357952213952357056140974408354173440635791397720610932999473703241918398814255275362994811954064820912468224131892551724930677715676493892869921426790840199600798807085779112854131346378899855545138289836687048918660685766286852276199524789699567994154833159365800848535248059731927121269157841084905465048764152977389352561685340108834453730139893330210765986258703154334901509553990091592209268471594519326651914685843021165854654380119091009831071244459145750976193183411590207529489774630266528538380011000213950174694472355034075543687572037516433204151217601537869823709241020510051494619335852686100897182065588340025334679570763716458250649152257797833022586793526594784648938165537701256313728194521212887453997160504204832
def continuedFra(x, y):
cF = []
while y:
cF += [x // y]
x, y = y, x % y
return cF
def Simplify(ctnf):
numerator = 0
denominator = 1
for x in ctnf[::-1]:
numerator, denominator = denominator, x * denominator + numerator
return (numerator, denominator)
def getit(c):
cf = []
for i in range(1, len(c)):
cf.append(Simplify(c[:i]))
return cf
def attack(e, n):
cf = continuedFra(e, n)
for (p2, p1) in getit(cf):
if p1 == 0:
continue
if n1 % p1 == 0 and p1 != 1:
return p1, p2
print('not find!')
q1, q2 = attack(n1, n2)
p1 = gmpy2.iroot(n1//q1, 2)[0]
p2 = gmpy2.iroot(n2//q2, 2)[0]
phi1 = p1*(p1-1)*(q1-1)
phi2 = p2*(p2-1)*(q2-1)
d1 = gmpy2.invert(e1, phi1)
d2 = gmpy2.invert(e2, phi2)
m1 = number.long_to_bytes(gmpy2.powmod(c1, d1, n1))
m2 = number.long_to_bytes(gmpy2.powmod(c2, d2, n2))
print(m1+m2)
#NSSCTF{ee5cb1a5-257a-48b0-9d62-9ef56ff0651a}
上面是完整的WP,在中間我們可以插入一行
assert n1/n2 - q1/q2 < 1/(2*q2*q2)
會發現他也是顯然滿足的。
連分數展開之後的內容便是常規RSA介面操作,不在贅述。
這裡我們可以發現,只要發現題目中有差不多大的數,便可以尋找是否還有另外兩個差不多大的數,並且這些數之間都是有聯絡的,只要能夠找到這樣的關係我們便可以考慮對較大的兩個數進行連分數展開得到近似數,便有可能得到想要的值。
[RSA3]P4(連分數進階)
題目
from Crypto.Util.number import *
from gmpy2 import *
flag = b'******'
flag = bytes_to_long(flag)
p = getPrime(1024)
r = getPrime(175)
a = inverse(r, p)
a = (a*flag) % p
print(f'a = {a}')
print(f'p = {p}')
'''
a = 79047880584807269054505204752966875903807058486141783766561521134845058071995038638934174701175782152417081883728635655442964823110171015637136681101856684888576194849310180873104729087883030291173114003115983405311162152717385429179852150760696213217464522070759438318396222163013306629318041233934326478247
p = 90596199661954314748094754376367411728681431234103196427120607507149461190520498120433570647077910673128371876546100672985278698226714483847201363857703757534255187784953078548908192496602029047268538065300238964884068500561488409356401505220814317044301436585177722826939067622852763442884505234084274439591
'''
我的解答:
上一題理解之後再看這一題就簡單很多了
我們把程式碼中的式子捋一捋
mr−1 ≡ a (mod p)
現在我們已知a和p,求解m,咦我們會發現這和之前說的不一樣啊,雖然a和p很接近,但是哪裡存在另外兩個數呢?
我們將上面的式子變變形狀,從有限域(取模的整數域)變成實數域
m = ar + kp
則有
m/rp - a/p = k/r
因為m相對於rp來說是一個非常小的數,所以我們得到近似關係
a/p ≈ k/r
找到了近似關係後,後面的做法便很簡單了,展開後得到(r,k),就可以進一步求解m了。
exp:
from Crypto.Util.number import *
import gmpy2
a = 79047880584807269054505204752966875903807058486141783766561521134845058071995038638934174701175782152417081883728635655442964823110171015637136681101856684888576194849310180873104729087883030291173114003115983405311162152717385429179852150760696213217464522070759438318396222163013306629318041233934326478247
p = 90596199661954314748094754376367411728681431234103196427120607507149461190520498120433570647077910673128371876546100672985278698226714483847201363857703757534255187784953078548908192496602029047268538065300238964884068500561488409356401505220814317044301436585177722826939067622852763442884505234084274439591
def continuedFra(x, y):
cF = []
while y:
cF += [x // y]
x, y = y, x % y
return cF
def Simplify(ctnf):
numerator = 0
denominator = 1
for x in ctnf[::-1]:
numerator, denominator = denominator, x * denominator + numerator
return (numerator, denominator)
def getit(c):
cf = []
for i in range(1, len(c)):
cf.append(Simplify(c[:i]))
return cf
cf = continuedFra(a, p)
for (r, k) in getit(cf):
if r == 0:
continue
y = abs(a*r - k*p)
flag = long_to_bytes(y)
if b'NSS' in flag:
print(flag)
#NSSCTF{e572546b-abb5-4358-8970-471abc12b7ef}
其實我們也可以發現真實比賽時,看到近似值可以先不用找具體的關係,展開就對了,再假定展開得到的值就是某個需要的值進行進一步計算,一般都是可以得到結果的:)
實際上本題可以用格密碼轉化成SVP進行求解.
[RSA3]P5(再探CRT)
題目
from Crypto.Util.number import *
from gmpy2 import *
import random
flag = b'******'
flag = bytes_to_long(flag)
nl = []
cl = []
def getn(bits):
n = 1
while n.bit_length() < bits:
n *= random.choice(sieve_base)
return n
for i in range(8):
n = getn(flag.bit_length())
c = pow(flag, 7, n)
nl.append(n)
cl.append(c)
print(nl)
print(cl)
'''
nl = [48900330639594979739701067783234903348599405413588466525574910520196852415104874636276388006189258357683981763, 52184798260918956005878710130354843122927544013692595240956998112200987084814453592388074200951779840156511, 57591305346419909943538345276263585821186563609432856462492112562586368230163591993342956384688555395772999, 1391052858660682537388264601016075339528373211889618359237336378385137832855656756800539626220549334300176727, 8401669052993451281764489325068020625937224410830694438332016050030698435746929661939302694116817188225591, 66809775375777747860816961274643428927028556487820183599747024350362932190079439298182707730302976119988715497, 41209230281867957743385705727577318625405890894626062454495908709761427062490881938652489884059847194603237277, 31140089821370202352241944402736292072447365626312703496944186462246895695650729682254970622208848300946861]
cl = [26617913696414745819584063604277199673357890677059949687794606743781436349829925794253672010780125661705587071, 6332739614121961923948917957498597962902897015582697635859365080803944882904908423983706426654363433337197, 46154051334276357655176765655327305918368830821288083739892570534253190653909520953027859629573215723954424, 2800905135165447908315158053695706832127646195243072751493365013371469263897970241141686022109978485359114, 3597083928897756955519089479028751799504001377334447013725903377254761160933418420625119547713455139382114, 17032086144873551648611964054579542303630306316746409528107026138674853298939194425805809444921339677455174485, 36111201824253386572496248461433786832561483450731317363761227351689971628309683994429845284904292821369745345, 28548175317543234723297895187238113463350377151401226415566179373530461612253257137535830491771909906093171]
'''
我的解答:
本題依然還是一個廣播攻擊的題目
我們知道廣播攻擊就是給了多組同餘方程,我們利用中國剩餘定理CRT便可以得到通解,但是在本題直接套用之前的exp你會發現報錯了,你會得到提示逆元不存在,這便是本題的考點,不互素的CRT。
回顧CRT我們有:
我們發現這裡面是需要求解逆元得到ti的,當我們遇到不互素即
gcd(ni,nj)≠1
時,實際上我們有一種樸素的做法,設gcd(ni,nj)=g
則
這樣我們便得到了兩個新的同餘方程,並且他們的模(ni/g,nj/g)是互素的,這種做法是沒有問題的但多組模數互相包含多個因子時,這種做法便變得非常繁瑣,因為只得到上述式子的話實際上是丟失資訊的,你還需要得到對於pi∣g的每個同餘式
這樣得到的所有式子做CRT才能夠得到足夠多的有效值。
-
因為只得到上述式子的話實際上是丟失資訊的,你還需要得到對於pi∣g的每個同餘式,關於上面這句的含義可以自行用具體值進行測試理解,有很多內容如果將其展開的非常平坦的話會顯得非常的枯燥,所以希望大家能夠自己動手來理解一些內容,這比看一百遍資料還要有效。對於足夠多實際上就是能夠得到原始值就是足夠多,得不到便是不夠多,這也是本題為什麼給了8組而不是7組的原因,因為不互素的因子會產生一些無效資訊,比如補充其他額外資訊才能夠得到有效的資訊。
-
那麼我們介紹了樸素的方案之後我們希望尋找一種和CRT一樣的通解手段而不是預處理,這裡我們先考慮兩個方程的情況
其中gcd(n1,n2)=g≠1,則有
即k1n1+c1=k2n2+c2,移項得到
我們現在要應該對這個式子非常眼熟,此等式成立則說明gcd(n1,n2)∣(c2−c1)(翡鐲定理),則有
即
有
代入最初和x的式子得
整理得
即
這樣我們便合併了兩個模不互素的同餘式得到了一個方程。
部分同學可能會看的迷迷糊糊,我這裡總結兩個可能會看不懂的點
1.繞來繞去是在幹嘛?為什麼不直接用k1,k2
我們知道k1,k2包括k3都是存在的,但是我們求不出它們來(能求出來就直接得到x了),所以我們必須透過已知值來進行替換。
2.
這個問題大家可能會經常犯錯,在實數運算中我們確實可以這樣做,但是這裡要注意如果整個運算過程都是在同餘的情況下我們確實可以進行抵消,但是實際上我們進行逆元的操作時的模是n2/g,而最後的模是n1n2/g,所以實際上這裡是
是不能夠直接進行抵消的。在其他地方涉及逆元運算時也一定要小心模數是否改變。
有了這層關係之後我們便可以將上式和n3操作進行轉化,最終得到一個包含所有模數的通式,餘數便是我們所需的原始值。
實際上上述過程也就是CRT的操作過程,只是我們在運算過程中進行了除g的操作,使得計算過程中的逆元是存在的。
其實CRT的本質就是利用同餘式
而這裡我們便可以透過擴充套件歐幾里得進行求解,因為上式本質便是
最後得到k1,k2從而得到一個解x0,只是因為取模導致我們得到的是
最終我們湊齊足夠多的ni得到
如果x<∏ni,則 x0便是原始值x。這便是CRT的本質運算。現在你應該知道為什麼我們在P1中花了很大的篇幅來介紹擴歐和歸約的思想,因為它們應用的非常廣泛,很多定理及推廣中都有它們的身影或思想。
exp:
from Crypto.Util.number import *
from gmpy2 import *
nl = [48900330639594979739701067783234903348599405413588466525574910520196852415104874636276388006189258357683981763, 52184798260918956005878710130354843122927544013692595240956998112200987084814453592388074200951779840156511, 57591305346419909943538345276263585821186563609432856462492112562586368230163591993342956384688555395772999, 1391052858660682537388264601016075339528373211889618359237336378385137832855656756800539626220549334300176727, 8401669052993451281764489325068020625937224410830694438332016050030698435746929661939302694116817188225591, 66809775375777747860816961274643428927028556487820183599747024350362932190079439298182707730302976119988715497, 41209230281867957743385705727577318625405890894626062454495908709761427062490881938652489884059847194603237277, 31140089821370202352241944402736292072447365626312703496944186462246895695650729682254970622208848300946861]
cl = [26617913696414745819584063604277199673357890677059949687794606743781436349829925794253672010780125661705587071, 6332739614121961923948917957498597962902897015582697635859365080803944882904908423983706426654363433337197, 46154051334276357655176765655327305918368830821288083739892570534253190653909520953027859629573215723954424, 2800905135165447908315158053695706832127646195243072751493365013371469263897970241141686022109978485359114, 3597083928897756955519089479028751799504001377334447013725903377254761160933418420625119547713455139382114, 17032086144873551648611964054579542303630306316746409528107026138674853298939194425805809444921339677455174485, 36111201824253386572496248461433786832561483450731317363761227351689971628309683994429845284904292821369745345, 28548175317543234723297895187238113463350377151401226415566179373530461612253257137535830491771909906093171]
def excrt(m, r):
lcm = m[0]
R = r[0]
for i in range(1, len(m)):
d, x, y = gcdext(lcm, m[i])
c = R - r[i]
if c % d:
return -1
x = x * c // d % (m[i] // d)
R -= lcm * x
lcm = lcm * m[i] // d
R %= lcm
return (R + lcm) % lcm
m = excrt(nl, cl)
print(m.bit_length()//7)
print(long_to_bytes(iroot(m, 7)[0]))
#NSSCTF{6ff0651a-48b0-257a-9d62-9ef5ee5cb1a5}
[RSA3]P6(限定範圍的p-1)
題目
from Crypto.Util.number import *
import random
primes = []
for i in range(1000):
primes.append(getPrime(64))
def getMyPrime(nbits: int):
while True:
n = 2
while n.bit_length() < nbits:
n *= random.choice(primes)
if isPrime(n+1):
return n+1
p = getMyPrime(512)
q = getPrime(512)
n = p*q
e = 65537
flag = b'NSSCTF{******}'
c = pow(bytes_to_long(flag), e, n)
print(f'n = {n}')
print(f'c = {c}')
'''
n = 210488679270475701976181947365152313699517734264122394812492020724654505220623065289117447808270300405893088216711827935540458944042230307295703758023289811232234667671779565383964487868833609515040373751117785890923111021052281871560758159098018301948230396406718130378740957192704249130990473406094468375190967933383609736557
c = 136071043914570532351840574748667342595827512223368889758030473691165475344493240895540489846178990095609930878050872170334417124306746585253763197947342333489768575699470163018093386136808345465103492262428343569799463896437045282842447134475696863670001725029430508792000363373891006638520238615750531296612676072986388618657
[12817836240916621099, 9796955111076276721, 14260192631353157767, 11331104417992923271, 9514036759383573643, 12830010251405547647, 13614319430115788837, 13292666469666083977, 14743386631123002553, 14117202746451676457, 13269748845129713117, 12168813134511397211, 17228879457544885133, 11476468574713278067, 11946685680111967199, 18345865007923209077, 18303664985620995833, 9822277703479114283, 15178066358256569473, 17098068971695098757, 13618686975649185601, 11744366650084293437, 14752193726031278261, 17843527472060726393, 12389668794044063273, 10376034649713785869, 12238540175552034637, 17132154884907233137, 11734611387998570581, 17011805096670339443, 11625121908845289409, 10757305216406425577, 12462221960790002209, 16018515046461158299, 13961897238779389541, 11607654254039926417, 14764422702778633637, 15889835560738915411, 13067226817787067883, 15887483815693916443, 17641812946382237687, 17751437011380057229, 18384735831631526519, 16918144377393116651, 14150464978154164637, 13178350295174895967, 17995769690138536847, 16340079015339247603, 9398681247575712871, 13634353827184119163, 9611544156521225383, 13453176756459641471, 11303353946688525031, 18109038864474076559, 15045485267231590583, 10972199753934977179, 17574722479092926033, 18278068689901766303, 16948848653119121327, 11758909188247026433, 15665449198029497387, 10901691956952449753, 10584519935735226743, 16912467675047183959, 14327261172669596407, 15097367563320670549, 12297273221784672769, 15947284817142437047, 16781387148892629007, 15881303895526705733, 13045061948663850751, 18436681745005029761, 9233724300944854859, 13047527195762392259, 14723757760242013169, 11741005205965231159, 16408614260735211923, 13814776270447837021, 15906163142517891569, 14423435831173412623, 14612928719996598469, 10885120118770555303, 13368686720584342981, 14068267570818591737, 9868356740416745089, 12406920698251977319, 9286022127447238097, 18023608417081960717, 14923516882492986133, 13823678708930659963, 12857551861722029083, 13230742121296437271, 12729591066572154191, 15849174322092304703, 11085431171727680393, 14068906847806320077, 13851658642377888133, 12875459865393464869, 16373459542443249833, 15042636961965421789, 17804579165451279653, 13220312902184268113, 15150287797243551839, 12346428755895098357, 17020549628614536703, 16886745404527188301, 18375430790398618129, 13224710597451808487, 13359444437510262103, 11873826262101064243, 11965351035977107903, 11235458928878258717, 12997583502966109111, 13789872877795337753, 9410284081150637203, 18303250922016774599, 12282563435683491241, 14305213835649582409, 11918623460221018469, 10943597593864147127, 13038337723454095519, 15455421326799165353, 14062369863925079513, 18367836708310870171, 10613492300802961321, 14459256689604923461, 11706673732895890387, 14382736049526145057, 16655509777788355597, 14000284683606298529, 11290821241077537707, 12847958971987427681, 13809253826547615959, 14684126452952111143, 11855586041954042173, 12714825000812576869, 9459493996196289107, 9842932973342874239, 10570590695078468843, 14410685183194015117, 16898517162308994587, 15220517599820119309, 17333608782273432163, 10377521770815190027, 13122631859485901471, 11571227468583314827, 11817889822931972323, 14228001997887128497, 14456085940081475863, 10270130489745680131, 17517555821987735831, 15429383763760026979, 11108995892538667811, 17911418867778656821, 17139731172232986937, 13426013319525942679, 14562642807139379233, 14531693252415486269, 15631238547467725579, 10320658119201020257, 11575894205699157263, 15384475741355621261, 10764073960673003609, 11153595693401172317, 14790585109191523507, 10690672323080867881, 10357625576156190589, 16431064857205643717, 12130023867007235381, 13564898535871926389, 16337575470726771133, 9618083378800557767, 17232134619106506173, 16342365536104729669, 17290061582737251799, 16670033868010116101, 16394458575620757607, 13679014824205066283, 17991831450196114597, 12317978714944305947, 11632115207816943743, 15797700688884441463, 11075555837128820431, 14881723251235989661, 10010880757411909987, 18270144545531928449, 9465870609311716069, 12582412206542381803, 14662660113361450837, 16112922901618122901, 15363650898935547023, 12533640949094063143, 9470733380298789667, 10096457749634891777, 14406227249889370421, 12890530725415748549, 17792709587851953943, 10409603150957944463, 16280446889224274527, 11347835861520223063, 17984512079289457829, 13366696032094869983, 15399033257453518289, 12925451097314982419, 10778713773001593313, 17284945985665888051, 13402816621446294619, 15528594004221819047, 15809192880967976213, 13251703483278993869, 12208007531464953347, 14651975501449610809, 10384298003710994317, 15330372718569145519, 17248847366496290681, 11854891655415812011, 17751134388906831949, 10124732408491652509, 13625466395305938587, 18200378429690571427, 17452972356845950849, 14900945233126132883, 11436315090796776343, 16581798874532357771, 15111242773400135623, 17641315625748809411, 10450595023153090573, 13264757738530097911, 14485829224324514741, 13330871005549345411, 17136650784851341057, 14910153824569971467, 11210011057574992181, 11177037566749571093, 11567028438251098903, 13198253645284080859, 9785835301058295319, 11870911273186997459, 17086899150352287461, 12688798468940186353, 12829816797037704869, 13850020717472465033, 13962611682980549657, 11101821698837041481, 11707465921615682923, 12959209007506476811, 16644144509323715441, 10367003935119200813, 15453978273858403009, 15167350154202134803, 9368800879722378161, 11455175913776290139, 12851750838491254999, 17944785619839501011, 15794784996188333269, 11020878345656646503, 12895215750829198793, 16875096766698669563, 14118851151285954833, 14838789173869952831, 13751766063230858977, 17320191755949110401, 12060022464165785371, 16746856058764394767, 11340262053390390623, 18063813798829005593, 17301743539019024441, 14582876446851166253, 13522319333542791731, 17645483968819162681, 9674664037282811197, 15042492503708901197, 13403260615183814477, 15357650346222449437, 13587415537998132773, 17790598348568475959, 14937073879575692303, 16946217240852764177, 16406234190000264941, 11235987239543284367, 12490317539195443457, 10442876360637230507, 16417744334203076861, 12058149621525280003, 13299492327856068067, 11314451949936901933, 12580137629414492233, 17187303597929461189, 11472019543632605501, 10358023847683468963, 17655020163619780043, 9551405925019296407, 12313496295674301209, 10693093530328277813, 13024645634541678097, 9897976814256674623, 12205181340503455921, 11417228617170103249, 12826004690606531803, 13639934695225511677, 14590472153531475251, 17909159724817643663, 15533310761093773937, 14386571855319704297, 9316892936362161067, 17993944869296641759, 14759692394249822753, 18270460879245227951, 11182120139434421927, 16177012907245614719, 18028663420331019887, 18139576777474000879, 11213134310805448589, 17936183694734803343, 17975442509209584199, 15559262723302226837, 10180836740719706297, 18197598310364802337, 16827523931763080353, 18214986373700605081, 17585494217763004861, 11448026570948864933, 10900056287904330073, 17166645406697902543, 17570484141533117293, 12398389280142315301, 14630567076893376083, 10833999841227994577, 13299004526654333801, 10244054538116403871, 12907824831930739939, 16885467716977238273, 13880284027516293029, 10887546467303319323, 18068389832047177387, 10450635565653187523, 14726030363122148237, 16768133481946424951, 10301298929545489007, 15415018517648901401, 16206238099391413103, 16263750958615351591, 10054000098803084741, 17081860428453965453, 17951459452539869287, 11892815832324644093, 13775418173952588841, 11507176664859257743, 12436316449453831829, 11373445294062449503, 12707349516508026313, 17304366121752246923, 15088976801734008287, 14882686898562658859, 13312883733509401117, 11175338376664870423, 14995241990449050829, 13984129139378165623, 18263293614524334931, 10991047462031450617, 12865816467095731189, 12198009780829783649, 16748296422094146653, 17904593640666707729, 13792268569149446983, 13853849612423089637, 11546534301480400423, 17137023443158040753, 17905444488998063857, 11980813095592929253, 17915972690674748693, 12451065502875272893, 15286203704429102609, 15961659110687401169, 16879684083254701141, 11466389710715075681, 9862223709098321893, 13427540762341339663, 17120171216590076191, 11328200399967258851, 10181508980912484023, 15114850231267812229, 13401368952119603083, 17310327686592116461, 10812290766823212593, 13321530124771363837, 16916384745420105733, 13158876505531892249, 12781125756513915947, 11177172300491135033, 15192519949009579177, 11107570709578280603, 15790871007179692423, 14673525326882261659, 16625393027047576363, 12208173252153948521, 18151011223033756559, 14150927812081733711, 9962724536266278113, 13883267417298402779, 12239907647067385063, 17851351494511502753, 16218780803683512137, 9231060907590526171, 12561800952561489217, 13912140573946770893, 13149132600571773931, 18113853656519618927, 18288722620221293333, 16238398234781792947, 15646176443969341973, 11480617125273259589, 14298265531428974159, 18152443754281945309, 15382191810022993691, 13677302948532689779, 13044467560942628911, 14180490201042674161, 17699382878024999029, 17295445764705446263, 16639917043083590129, 18119370341032732567, 12154128334903051433, 13164685890717792107, 16936772055385035967, 15096483065553525473, 13471209141541779203, 17378837190351254407, 17426974534141344883, 17959141780827119891, 15016498199784708659, 14421160967688875941, 16740532654485547157, 14936157018002326123, 13256118391055166017, 18174072117119534467, 12090575013064577347, 13006876700311968451, 9238945670292014191, 14213473652368499983, 14243331673872027131, 15857539045385929681, 13412686116627591491, 11592325887070165747, 15608925272834295691, 14666236964631839891, 13540685243058340663, 18270373973909961613, 13828282470103450277, 17892440011286210501, 16870901545940692091, 12413729884613628023, 9266844013399220221, 9745512147631925389, 16387537652784438451, 16570045942363855537, 10568791466436873997, 10182396317953610903, 12853823905502858353, 11851841417409724277, 14115519128426356727, 12881420948009143253, 13130088098325861749, 11721786782351310083, 11236214958267547553, 16702899637167067903, 13501762358014708543, 17462031538915936859, 17276389012007923211, 10644899384346664337, 14027005255127061913, 13530526660154644807, 9844415966928882743, 11249128120835910791, 16777866679514313817, 14453045993106743699, 10996863066540575321, 12283642992171368333, 11404591589887867667, 13677761664265732687, 13110578735652791741, 16010046184639114171, 12753941270332721647, 15772567772565704131, 11831712320633880293, 13319727865432694257, 10771551848090338763, 13480980853991727469, 14248794265347244051, 10664170815864253153, 18371374206685581661, 16482126216840379091, 15311554751751063719, 11347740685464268973, 11911625562195859271, 15948182894664837227, 15833902828630883027, 10628744258695587949, 12242229966886189549, 15729900088141513717, 10331962319086103687, 17739760722083508421, 12122206963635673601, 13444533154829926777, 16919840780438603417, 14181132415499287453, 15832764916978218089, 11107329810687234827, 12537867916219452571, 15179335658283523219, 18157750076527384319, 11335208638879830449, 12778309804903027751, 12331094589527085751, 16517169709337458391, 16074354330760224817, 11121010187417970569, 17541225150843770231, 13072072021644732583, 10683918634042372291, 17818396544323153021, 18097213311786551693, 17377696366492674853, 17840289332463757343, 12300868091354913911, 12110148694323274373, 18183424490112093451, 14470426956322731539, 11537900791630973609, 12288308024287816769, 9416608386548247127, 16142185824626408983, 15319391474385481709, 17427093242388654611, 15757681760350596491, 9375203980011408289, 15281050099968592837, 13962807632993334377, 15641960043003280541, 15857385507932475607, 11328494963300401669, 18165773294104417547, 14012380629632910359, 15541214952410221769, 17008189780920470053, 14632891822044772337, 12404052309147249313, 17208994155033269833, 10635749760511488169, 12320122505182031957, 14796692998214399561, 9673910288177915309, 10047903793961297059, 11326483999844129969, 14635083490823091097, 18071773072169124043, 11341815024873111347, 9438792655485507689, 10008152749575925909, 17567654747849893279, 17061517364811209911, 17221503802511195443, 16695681584397997897, 13081948422266488091, 14625725701559358637, 17169462066133068869, 15709579351595465593, 12209792348258846639, 12122275607677157911, 13807547725741290973, 15583160659433004293, 13396260775506371641, 18217020689915921843, 15619329053256302987, 14146270775635402231, 16863952377303204673, 14548776148506068719, 14529188722082059457, 17265380804141201681, 9776286763289778197, 12466859136109077443, 9772744223809808053, 14470786313269634927, 14607320696711471221, 12455737005988354019, 16637246382861080953, 15133708215096275683, 14847081677445301901, 10332654304000904033, 11159603116014973271, 15931004335130864743, 11477160443275710217, 9535586193995849951, 11293175983668556793, 9923153586904495507, 11933006027142853931, 11128574253134634017, 11076766797263201329, 13515870030341559941, 14622814541338434853, 17463892929742334407, 12615007904997547229, 18206100766716434933, 11455838674150852697, 17479338037013854559, 13360281258747049621, 10995035322560010517, 10928474912163737647, 17726175981976035227, 11704404121506907637, 17619146892908914121, 17704564527305769329, 11812175367635269621, 13416429352943032249, 12131563217847962351, 12183503097530938127, 13981143659247294641, 10634933508011331559, 11562423714401189239, 17688490613654951281, 16861173019672178969, 11053050244878979411, 14086304443079658787, 10578453109792325141, 11682151227114266497, 17000674853229930419, 12598355342131798913, 18392805884632295521, 18431468816652818879, 10874622447515914201, 9872938674493987793, 9744625343948785841, 11255274706725187783, 13530191079590038457, 16173365083190310629, 13224430590784162699, 15969778943599937653, 14043089726984416741, 13781348214896464493, 17182476995296609963, 12896436977884956841, 15077836731319621141, 10080593144973733229, 15891293339878516513, 16043377959654964921, 12784208144845810363, 11543219604826483837, 12024729597387644591, 9777324062326177771, 11527333015686779569, 11474993589954273647, 10182859812157362677, 11376680767502967977, 13996225568082222469, 15977867067599549579, 13655821277773358029, 13297113872058771941, 9897159622397740493, 10013043069023436713, 11531819115816693283, 13710715432898401733, 15195815565078492053, 15452255999389129147, 13604937934214924243, 10904911638935266651, 17580607694180244349, 10376618524272533669, 9571446041130564469, 9825683462733434701, 14468571684404171527, 12770922639680720219, 18167455477803076531, 11465084556247891097, 12746847720200807209, 12775769479808373047, 16393448046945064087, 11652620391412172563, 11478574931730042203, 12270257063042073917, 18023307951026693759, 13974408232745028701, 17780249113700985763, 11355073357007701631, 14471311142350516427, 17473300039363624031, 9777054399339418903, 17919523597873134539, 18378677639427969179, 16777121138942295433, 10168805248401432883, 12641872323183817099, 10116977178009093853, 12176766460209633133, 10318924588276162217, 15546400482337419701, 11832021544471242827, 11215298551637042363, 13865628369013960619, 11129154280835514367, 16222330145886628943, 10818887859000996101, 12468152598968308903, 13676585842283059039, 12921766523283173867, 12089564821140624607, 10225474175631159121, 15819547992851766347, 10182914408006996497, 17167878424092859061, 11514181842204916613, 18287116051767400657, 13272824243652359389, 16648019410746154129, 11920726101309487981, 12649244363524402771, 10550622175590275827, 16618529989972308329, 17515407948374854423, 14391969260138111129, 14759186383646463271, 10919403521211062401, 12185965786265832247, 12116710629039649439, 18433362234939139601, 15965694148547533529, 12974211820712657803, 13353321620267206573, 17096739903159443939, 16696518371292656759, 14462358883896548437, 11367744283307543293, 15323226004742755391, 11746436008806326197, 10920871861266559943, 11587724236478293867, 14992265004480347113, 15708312669494860931, 17916196036842304759, 12922134467647572521, 10454128140476511371, 16430520042575406421, 17076469495651100089, 17772189207011073799, 13384875880146838373, 13935012923273198147, 15240883815131987791, 9420660305133379817, 18240375964640868173, 14678307842794601773, 15288259585116606757, 16610633684634874867, 16486217839536541813, 11661546558365415463, 12152118203599876189, 11800253185351909913, 14374602260090605153, 10449913208502792287, 10009143259393434427, 13307738699651704159, 10654277669677635361, 15407444571115834129, 16834689677973985291, 15066169839778509209, 15475733561257809121, 16380412207874211983, 17194107447716508143, 12192621570297038107, 12240237512637106837, 10441056377505748681, 17495542058396571671, 18293106931869404749, 13865897548876531381, 14113466667785343973, 17525437199295255289, 17422068598489386241, 17287527045122701379, 9455908640325923213, 17335751448105539767, 13590715372748461303, 13209806666168836589, 10261162812051097369, 17733334183472849531, 13246213547584426837, 17766000084271444483, 14150582008333438807, 16133690731517495399, 14641711413776366441, 13022351466394992461, 9226681052162486651, 12760195383928077577, 17567872876849046111, 12340487597227543063, 15563748447258497573, 15318459465935920571, 14255243227091610833, 17062529558035843303, 16176535147083208321, 15827087675880312413, 17271698018463248329, 14142147620294354209, 13914535203046847609, 11613211706825082407, 12959862789560256293, 14016596084494475893, 11293492671321492157, 18421116955007051749, 16404448288688945063, 10841598730147032461, 10668072389421742417, 11551364596378565711, 13850029337813227861, 11516141636470693969, 15920496765925322419, 14276274249919823203, 9237568470631580119, 18381932334031688533, 17659877642674983931, 11159795358572892799, 18206258071410742637, 12280903436314972243, 16038761168382463333, 12461628152852020297, 12599866901700933119, 9503462554473103217, 11481782370632833811, 15766095164814323669, 13079723298271643593, 9272657104293910643, 14060047426801456841, 13335454529166743357, 15841992693734542661, 17764709418538501487, 12160915899913859321, 14713689640122062573, 13337663648949716537, 18211158405283472779, 15158622942577374571, 11407833997760128867, 10508929620338632321, 15961989193725497063, 10501876330362297371, 12364784867218660099, 10131314553714497933, 14441100812606959489, 14721325750202554117, 13167419766289684193, 11981676591145933817, 17913851093510662607, 11835488665953985127, 16780953686692778041, 15608609099671724267, 15664551105384515119, 12802145189741653877, 16805549931391100567, 18445301756468541301, 17655249735232734959, 9689891077025566237, 14840484494159775929, 10723334034602592439, 18386904850027413517, 12096629257610342447, 13067964115598968019, 12252109817674770679, 17369822671514623363, 13509155615162956807, 16855863641920860103, 14465746296157191683, 13544016597391911559, 12971969005041850273, 12280334067500075587, 15752570905864769503, 12113525236215732611, 11664013792437359831, 10228837640437031773, 12109791131521690777, 13624111940052646099, 12777090183758952047, 12426963274674728939, 11441470375408996129, 9257227171899364921, 10191312647768104939, 11865326812561002887, 13522604753854591261, 10249599313373359463, 16159615612202096369, 9836233098999799211, 14799557554105507697, 14042255386918619699, 16477871730966758129, 16642525196644416059, 12423008258752432981, 17273875260714952171, 9470913631654644977, 11887078253521363603, 16706376900014360707, 10304459396140054031, 17693305758580051121, 17214391436952288473, 13618743595320511073, 13169249530153192079, 12035858011919909029, 12860667847247804537, 13990854606273162281, 17035861733161781977, 14770109568091276793, 17949815755824751961, 12390337922014329203, 9595001010493198999, 14690160353746242721, 16314094344794415149, 15483233288782887491, 13061397420799425431, 12076045453514601679, 15407273036788472813, 11365402888927879361, 16668884373589636511, 13828335850402659011, 13284203923815359527, 17300809842931614721, 16947803187487136093, 18225750745362866369, 9284672876803885567, 14597852340551274989, 16473939500074387811, 14300584548546758897, 10466932272724101787, 14229473210374543483, 13248150377350757731, 9598039034657163599, 12586816162498814623, 11159150798363316113, 16077108181795072301, 11161401146827356863, 17852976451365316379, 16386970647736403383, 16568117397633516523, 17674878979814499799, 14520861146176965691, 10340053725357332591, 9799386102480704957, 16097477422918098601, 13239453234793950397, 17567007567243212159, 14136045876498729691, 11732340248501116493, 10470310463829179399, 12703325772051719383, 13035241397098055021, 17395156339749341267, 9668529469335994589, 14249010465960845651, 16914660786225731381, 12310520468883701851, 16246592021694289649, 13480017886196771549, 14219082481229344661, 11647439617192501739, 12765954006551032897, 10460413869136300141, 13716846676298104453, 14503448822338349359, 11041742165867028397, 11701704236558588467, 17606212925100148273, 12342707180459270959, 15360511526093354189, 11298030030747659447, 12872763047261841389, 18232938457364630449, 14660255297113325941, 11890851251611038169, 16792857595881777097, 11852378876588707279, 15357599751372293533, 17780342512970330669, 14195457757956580333, 10658400270468681989, 15387143294376736159, 10267219662942666551, 11046696135185833781, 13885088134451378279, 10645311967978806011, 17659494527222079353, 12862971250844658743, 15093229194999614917, 16241065349609244691, 17076182031924555031, 10410526641699080551, 14619036188529238943, 16435691426252481919, 17757270819329871647, 9244265187799778663, 18317093359569022523, 11159244222937462369, 12404088147132662621, 12503445554528532469, 11834507189075821319, 16399491741674305727, 17314200642630424609, 12461073769029981829]
'''
我的解答:
本題屬於P-1光滑攻擊得進階題型之一,這裡我們很容易發現P是從primes裡面隨機選取一些素數相乘後得到的,對於傳統的光滑攻擊我們的做法是不斷的執行
直到k!覆蓋了p-1下的所有素因子為止,但這裡我們發現primes裡面的素數都是64位的,從1開始遍歷很顯然需要很長很長的時間才能覆蓋,所以我們直接套用之前的指令碼是不能得到答案的。
剛才我們說了在P-1光滑攻擊中我們要做的就是得到一個可以覆蓋所有素因子的數,顯然在這裡我們已經知道了P-1是由這些素數構成的,所以我們可以直接從primes中選取每個pi進行計算即可,即
明白了我們要做什麼便可以輕鬆寫出exp了
from Crypto.Util.number import *
from gmpy2 import *
n = 210488679270475701976181947365152313699517734264122394812492020724654505220623065289117447808270300405893088216711827935540458944042230307295703758023289811232234667671779565383964487868833609515040373751117785890923111021052281871560758159098018301948230396406718130378740957192704249130990473406094468375190967933383609736557
c = 136071043914570532351840574748667342595827512223368889758030473691165475344493240895540489846178990095609930878050872170334417124306746585253763197947342333489768575699470163018093386136808345465103492262428343569799463896437045282842447134475696863670001725029430508792000363373891006638520238615750531296612676072986388618657
primes = [12817836240916621099, 9796955111076276721, 14260192631353157767, 11331104417992923271, 9514036759383573643, 12830010251405547647, 13614319430115788837, 13292666469666083977, 14743386631123002553, 14117202746451676457, 13269748845129713117, 12168813134511397211, 17228879457544885133, 11476468574713278067, 11946685680111967199, 18345865007923209077, 18303664985620995833, 9822277703479114283, 15178066358256569473, 17098068971695098757, 13618686975649185601, 11744366650084293437, 14752193726031278261, 17843527472060726393, 12389668794044063273, 10376034649713785869, 12238540175552034637, 17132154884907233137, 11734611387998570581, 17011805096670339443, 11625121908845289409, 10757305216406425577, 12462221960790002209, 16018515046461158299, 13961897238779389541, 11607654254039926417, 14764422702778633637, 15889835560738915411, 13067226817787067883, 15887483815693916443, 17641812946382237687, 17751437011380057229, 18384735831631526519, 16918144377393116651, 14150464978154164637, 13178350295174895967, 17995769690138536847, 16340079015339247603, 9398681247575712871, 13634353827184119163, 9611544156521225383, 13453176756459641471, 11303353946688525031, 18109038864474076559, 15045485267231590583, 10972199753934977179, 17574722479092926033, 18278068689901766303, 16948848653119121327, 11758909188247026433, 15665449198029497387, 10901691956952449753, 10584519935735226743, 16912467675047183959, 14327261172669596407, 15097367563320670549, 12297273221784672769, 15947284817142437047, 16781387148892629007, 15881303895526705733, 13045061948663850751, 18436681745005029761, 9233724300944854859, 13047527195762392259, 14723757760242013169, 11741005205965231159, 16408614260735211923, 13814776270447837021, 15906163142517891569, 14423435831173412623, 14612928719996598469, 10885120118770555303, 13368686720584342981, 14068267570818591737, 9868356740416745089, 12406920698251977319, 9286022127447238097, 18023608417081960717, 14923516882492986133, 13823678708930659963, 12857551861722029083, 13230742121296437271, 12729591066572154191, 15849174322092304703, 11085431171727680393, 14068906847806320077, 13851658642377888133, 12875459865393464869, 16373459542443249833, 15042636961965421789, 17804579165451279653, 13220312902184268113, 15150287797243551839, 12346428755895098357, 17020549628614536703, 16886745404527188301, 18375430790398618129, 13224710597451808487, 13359444437510262103, 11873826262101064243, 11965351035977107903, 11235458928878258717, 12997583502966109111, 13789872877795337753, 9410284081150637203, 18303250922016774599, 12282563435683491241, 14305213835649582409, 11918623460221018469, 10943597593864147127, 13038337723454095519, 15455421326799165353, 14062369863925079513, 18367836708310870171, 10613492300802961321, 14459256689604923461, 11706673732895890387, 14382736049526145057, 16655509777788355597, 14000284683606298529, 11290821241077537707, 12847958971987427681, 13809253826547615959, 14684126452952111143, 11855586041954042173, 12714825000812576869, 9459493996196289107, 9842932973342874239, 10570590695078468843, 14410685183194015117, 16898517162308994587, 15220517599820119309, 17333608782273432163, 10377521770815190027, 13122631859485901471, 11571227468583314827, 11817889822931972323, 14228001997887128497, 14456085940081475863, 10270130489745680131, 17517555821987735831, 15429383763760026979, 11108995892538667811, 17911418867778656821, 17139731172232986937, 13426013319525942679, 14562642807139379233, 14531693252415486269, 15631238547467725579, 10320658119201020257, 11575894205699157263, 15384475741355621261, 10764073960673003609, 11153595693401172317, 14790585109191523507, 10690672323080867881, 10357625576156190589, 16431064857205643717, 12130023867007235381, 13564898535871926389, 16337575470726771133, 9618083378800557767, 17232134619106506173, 16342365536104729669, 17290061582737251799, 16670033868010116101, 16394458575620757607, 13679014824205066283, 17991831450196114597, 12317978714944305947, 11632115207816943743, 15797700688884441463, 11075555837128820431, 14881723251235989661, 10010880757411909987, 18270144545531928449, 9465870609311716069, 12582412206542381803, 14662660113361450837, 16112922901618122901, 15363650898935547023, 12533640949094063143, 9470733380298789667, 10096457749634891777, 14406227249889370421, 12890530725415748549, 17792709587851953943, 10409603150957944463, 16280446889224274527, 11347835861520223063, 17984512079289457829, 13366696032094869983, 15399033257453518289, 12925451097314982419, 10778713773001593313, 17284945985665888051, 13402816621446294619, 15528594004221819047, 15809192880967976213, 13251703483278993869, 12208007531464953347, 14651975501449610809, 10384298003710994317, 15330372718569145519, 17248847366496290681, 11854891655415812011, 17751134388906831949, 10124732408491652509, 13625466395305938587, 18200378429690571427, 17452972356845950849, 14900945233126132883, 11436315090796776343, 16581798874532357771, 15111242773400135623, 17641315625748809411, 10450595023153090573, 13264757738530097911, 14485829224324514741, 13330871005549345411, 17136650784851341057, 14910153824569971467, 11210011057574992181, 11177037566749571093, 11567028438251098903, 13198253645284080859, 9785835301058295319, 11870911273186997459, 17086899150352287461, 12688798468940186353, 12829816797037704869, 13850020717472465033, 13962611682980549657, 11101821698837041481, 11707465921615682923, 12959209007506476811, 16644144509323715441, 10367003935119200813, 15453978273858403009, 15167350154202134803, 9368800879722378161, 11455175913776290139, 12851750838491254999, 17944785619839501011, 15794784996188333269, 11020878345656646503, 12895215750829198793, 16875096766698669563, 14118851151285954833, 14838789173869952831, 13751766063230858977, 17320191755949110401, 12060022464165785371, 16746856058764394767, 11340262053390390623, 18063813798829005593, 17301743539019024441, 14582876446851166253, 13522319333542791731, 17645483968819162681, 9674664037282811197, 15042492503708901197, 13403260615183814477, 15357650346222449437, 13587415537998132773, 17790598348568475959, 14937073879575692303, 16946217240852764177, 16406234190000264941, 11235987239543284367, 12490317539195443457, 10442876360637230507, 16417744334203076861, 12058149621525280003, 13299492327856068067, 11314451949936901933, 12580137629414492233, 17187303597929461189, 11472019543632605501, 10358023847683468963, 17655020163619780043, 9551405925019296407, 12313496295674301209, 10693093530328277813, 13024645634541678097, 9897976814256674623, 12205181340503455921, 11417228617170103249, 12826004690606531803, 13639934695225511677, 14590472153531475251, 17909159724817643663, 15533310761093773937, 14386571855319704297, 9316892936362161067, 17993944869296641759, 14759692394249822753, 18270460879245227951, 11182120139434421927, 16177012907245614719, 18028663420331019887, 18139576777474000879, 11213134310805448589, 17936183694734803343, 17975442509209584199, 15559262723302226837, 10180836740719706297, 18197598310364802337, 16827523931763080353, 18214986373700605081, 17585494217763004861, 11448026570948864933, 10900056287904330073, 17166645406697902543, 17570484141533117293, 12398389280142315301, 14630567076893376083, 10833999841227994577, 13299004526654333801, 10244054538116403871, 12907824831930739939, 16885467716977238273, 13880284027516293029, 10887546467303319323, 18068389832047177387, 10450635565653187523, 14726030363122148237, 16768133481946424951, 10301298929545489007, 15415018517648901401, 16206238099391413103, 16263750958615351591, 10054000098803084741, 17081860428453965453, 17951459452539869287, 11892815832324644093, 13775418173952588841, 11507176664859257743, 12436316449453831829, 11373445294062449503, 12707349516508026313, 17304366121752246923, 15088976801734008287, 14882686898562658859, 13312883733509401117, 11175338376664870423, 14995241990449050829, 13984129139378165623, 18263293614524334931, 10991047462031450617, 12865816467095731189, 12198009780829783649, 16748296422094146653, 17904593640666707729, 13792268569149446983, 13853849612423089637, 11546534301480400423, 17137023443158040753, 17905444488998063857, 11980813095592929253, 17915972690674748693, 12451065502875272893, 15286203704429102609, 15961659110687401169, 16879684083254701141, 11466389710715075681, 9862223709098321893, 13427540762341339663, 17120171216590076191, 11328200399967258851, 10181508980912484023, 15114850231267812229, 13401368952119603083, 17310327686592116461, 10812290766823212593, 13321530124771363837, 16916384745420105733, 13158876505531892249, 12781125756513915947, 11177172300491135033, 15192519949009579177, 11107570709578280603, 15790871007179692423, 14673525326882261659, 16625393027047576363, 12208173252153948521, 18151011223033756559, 14150927812081733711, 9962724536266278113, 13883267417298402779, 12239907647067385063, 17851351494511502753, 16218780803683512137, 9231060907590526171, 12561800952561489217, 13912140573946770893, 13149132600571773931, 18113853656519618927, 18288722620221293333, 16238398234781792947, 15646176443969341973, 11480617125273259589, 14298265531428974159, 18152443754281945309, 15382191810022993691, 13677302948532689779, 13044467560942628911, 14180490201042674161, 17699382878024999029, 17295445764705446263, 16639917043083590129, 18119370341032732567, 12154128334903051433, 13164685890717792107, 16936772055385035967, 15096483065553525473, 13471209141541779203, 17378837190351254407, 17426974534141344883, 17959141780827119891, 15016498199784708659, 14421160967688875941, 16740532654485547157, 14936157018002326123, 13256118391055166017, 18174072117119534467, 12090575013064577347, 13006876700311968451, 9238945670292014191, 14213473652368499983, 14243331673872027131, 15857539045385929681, 13412686116627591491, 11592325887070165747, 15608925272834295691, 14666236964631839891, 13540685243058340663, 18270373973909961613, 13828282470103450277, 17892440011286210501, 16870901545940692091, 12413729884613628023, 9266844013399220221, 9745512147631925389, 16387537652784438451, 16570045942363855537, 10568791466436873997, 10182396317953610903, 12853823905502858353, 11851841417409724277, 14115519128426356727, 12881420948009143253, 13130088098325861749, 11721786782351310083, 11236214958267547553, 16702899637167067903, 13501762358014708543, 17462031538915936859, 17276389012007923211, 10644899384346664337, 14027005255127061913, 13530526660154644807, 9844415966928882743, 11249128120835910791, 16777866679514313817, 14453045993106743699, 10996863066540575321, 12283642992171368333, 11404591589887867667, 13677761664265732687, 13110578735652791741, 16010046184639114171, 12753941270332721647, 15772567772565704131, 11831712320633880293, 13319727865432694257, 10771551848090338763, 13480980853991727469, 14248794265347244051, 10664170815864253153, 18371374206685581661, 16482126216840379091, 15311554751751063719, 11347740685464268973, 11911625562195859271, 15948182894664837227, 15833902828630883027, 10628744258695587949, 12242229966886189549, 15729900088141513717, 10331962319086103687, 17739760722083508421, 12122206963635673601, 13444533154829926777, 16919840780438603417, 14181132415499287453, 15832764916978218089, 11107329810687234827, 12537867916219452571, 15179335658283523219, 18157750076527384319, 11335208638879830449, 12778309804903027751, 12331094589527085751, 16517169709337458391, 16074354330760224817, 11121010187417970569, 17541225150843770231, 13072072021644732583, 10683918634042372291, 17818396544323153021, 18097213311786551693, 17377696366492674853, 17840289332463757343, 12300868091354913911, 12110148694323274373, 18183424490112093451, 14470426956322731539, 11537900791630973609, 12288308024287816769, 9416608386548247127, 16142185824626408983, 15319391474385481709, 17427093242388654611, 15757681760350596491, 9375203980011408289, 15281050099968592837, 13962807632993334377, 15641960043003280541, 15857385507932475607, 11328494963300401669, 18165773294104417547, 14012380629632910359, 15541214952410221769, 17008189780920470053, 14632891822044772337, 12404052309147249313, 17208994155033269833, 10635749760511488169, 12320122505182031957, 14796692998214399561, 9673910288177915309, 10047903793961297059, 11326483999844129969, 14635083490823091097, 18071773072169124043, 11341815024873111347, 9438792655485507689, 10008152749575925909, 17567654747849893279, 17061517364811209911, 17221503802511195443, 16695681584397997897, 13081948422266488091, 14625725701559358637, 17169462066133068869, 15709579351595465593, 12209792348258846639, 12122275607677157911, 13807547725741290973, 15583160659433004293, 13396260775506371641, 18217020689915921843, 15619329053256302987, 14146270775635402231, 16863952377303204673, 14548776148506068719, 14529188722082059457, 17265380804141201681, 9776286763289778197, 12466859136109077443, 9772744223809808053, 14470786313269634927, 14607320696711471221, 12455737005988354019, 16637246382861080953, 15133708215096275683, 14847081677445301901, 10332654304000904033, 11159603116014973271, 15931004335130864743, 11477160443275710217, 9535586193995849951, 11293175983668556793, 9923153586904495507, 11933006027142853931, 11128574253134634017, 11076766797263201329, 13515870030341559941, 14622814541338434853, 17463892929742334407, 12615007904997547229, 18206100766716434933, 11455838674150852697, 17479338037013854559, 13360281258747049621, 10995035322560010517, 10928474912163737647, 17726175981976035227, 11704404121506907637, 17619146892908914121, 17704564527305769329, 11812175367635269621, 13416429352943032249, 12131563217847962351, 12183503097530938127, 13981143659247294641, 10634933508011331559, 11562423714401189239, 17688490613654951281, 16861173019672178969, 11053050244878979411, 14086304443079658787, 10578453109792325141, 11682151227114266497, 17000674853229930419, 12598355342131798913, 18392805884632295521, 18431468816652818879, 10874622447515914201, 9872938674493987793, 9744625343948785841, 11255274706725187783, 13530191079590038457, 16173365083190310629, 13224430590784162699, 15969778943599937653, 14043089726984416741, 13781348214896464493, 17182476995296609963, 12896436977884956841, 15077836731319621141, 10080593144973733229, 15891293339878516513, 16043377959654964921, 12784208144845810363, 11543219604826483837, 12024729597387644591, 9777324062326177771, 11527333015686779569, 11474993589954273647, 10182859812157362677, 11376680767502967977, 13996225568082222469, 15977867067599549579, 13655821277773358029, 13297113872058771941, 9897159622397740493, 10013043069023436713, 11531819115816693283, 13710715432898401733, 15195815565078492053, 15452255999389129147, 13604937934214924243, 10904911638935266651, 17580607694180244349, 10376618524272533669, 9571446041130564469, 9825683462733434701, 14468571684404171527, 12770922639680720219, 18167455477803076531, 11465084556247891097, 12746847720200807209, 12775769479808373047, 16393448046945064087, 11652620391412172563, 11478574931730042203, 12270257063042073917, 18023307951026693759, 13974408232745028701, 17780249113700985763, 11355073357007701631, 14471311142350516427, 17473300039363624031, 9777054399339418903, 17919523597873134539, 18378677639427969179, 16777121138942295433, 10168805248401432883, 12641872323183817099, 10116977178009093853, 12176766460209633133, 10318924588276162217, 15546400482337419701, 11832021544471242827, 11215298551637042363, 13865628369013960619, 11129154280835514367, 16222330145886628943, 10818887859000996101, 12468152598968308903, 13676585842283059039, 12921766523283173867, 12089564821140624607, 10225474175631159121, 15819547992851766347, 10182914408006996497, 17167878424092859061, 11514181842204916613, 18287116051767400657, 13272824243652359389, 16648019410746154129, 11920726101309487981, 12649244363524402771, 10550622175590275827, 16618529989972308329, 17515407948374854423, 14391969260138111129, 14759186383646463271, 10919403521211062401, 12185965786265832247, 12116710629039649439, 18433362234939139601, 15965694148547533529, 12974211820712657803, 13353321620267206573, 17096739903159443939, 16696518371292656759, 14462358883896548437, 11367744283307543293, 15323226004742755391, 11746436008806326197, 10920871861266559943, 11587724236478293867, 14992265004480347113, 15708312669494860931, 17916196036842304759, 12922134467647572521, 10454128140476511371, 16430520042575406421, 17076469495651100089, 17772189207011073799, 13384875880146838373, 13935012923273198147, 15240883815131987791, 9420660305133379817, 18240375964640868173, 14678307842794601773, 15288259585116606757, 16610633684634874867, 16486217839536541813, 11661546558365415463, 12152118203599876189, 11800253185351909913, 14374602260090605153, 10449913208502792287, 10009143259393434427, 13307738699651704159, 10654277669677635361, 15407444571115834129, 16834689677973985291, 15066169839778509209, 15475733561257809121, 16380412207874211983, 17194107447716508143, 12192621570297038107, 12240237512637106837, 10441056377505748681, 17495542058396571671, 18293106931869404749, 13865897548876531381, 14113466667785343973, 17525437199295255289, 17422068598489386241, 17287527045122701379, 9455908640325923213, 17335751448105539767, 13590715372748461303, 13209806666168836589, 10261162812051097369, 17733334183472849531, 13246213547584426837, 17766000084271444483, 14150582008333438807, 16133690731517495399, 14641711413776366441, 13022351466394992461, 9226681052162486651, 12760195383928077577, 17567872876849046111, 12340487597227543063, 15563748447258497573, 15318459465935920571, 14255243227091610833, 17062529558035843303, 16176535147083208321, 15827087675880312413, 17271698018463248329, 14142147620294354209, 13914535203046847609, 11613211706825082407, 12959862789560256293, 14016596084494475893, 11293492671321492157, 18421116955007051749, 16404448288688945063, 10841598730147032461, 10668072389421742417, 11551364596378565711, 13850029337813227861, 11516141636470693969, 15920496765925322419, 14276274249919823203, 9237568470631580119, 18381932334031688533, 17659877642674983931, 11159795358572892799, 18206258071410742637, 12280903436314972243, 16038761168382463333, 12461628152852020297, 12599866901700933119, 9503462554473103217, 11481782370632833811, 15766095164814323669, 13079723298271643593, 9272657104293910643, 14060047426801456841, 13335454529166743357, 15841992693734542661, 17764709418538501487, 12160915899913859321, 14713689640122062573, 13337663648949716537, 18211158405283472779, 15158622942577374571, 11407833997760128867, 10508929620338632321, 15961989193725497063, 10501876330362297371, 12364784867218660099, 10131314553714497933, 14441100812606959489, 14721325750202554117, 13167419766289684193, 11981676591145933817, 17913851093510662607, 11835488665953985127, 16780953686692778041, 15608609099671724267, 15664551105384515119, 12802145189741653877, 16805549931391100567, 18445301756468541301, 17655249735232734959, 9689891077025566237, 14840484494159775929, 10723334034602592439, 18386904850027413517, 12096629257610342447, 13067964115598968019, 12252109817674770679, 17369822671514623363, 13509155615162956807, 16855863641920860103, 14465746296157191683, 13544016597391911559, 12971969005041850273, 12280334067500075587, 15752570905864769503, 12113525236215732611, 11664013792437359831, 10228837640437031773, 12109791131521690777, 13624111940052646099, 12777090183758952047, 12426963274674728939, 11441470375408996129, 9257227171899364921, 10191312647768104939, 11865326812561002887, 13522604753854591261, 10249599313373359463, 16159615612202096369, 9836233098999799211, 14799557554105507697, 14042255386918619699, 16477871730966758129, 16642525196644416059, 12423008258752432981, 17273875260714952171, 9470913631654644977, 11887078253521363603, 16706376900014360707, 10304459396140054031, 17693305758580051121, 17214391436952288473, 13618743595320511073, 13169249530153192079, 12035858011919909029, 12860667847247804537, 13990854606273162281, 17035861733161781977, 14770109568091276793, 17949815755824751961, 12390337922014329203, 9595001010493198999, 14690160353746242721, 16314094344794415149, 15483233288782887491, 13061397420799425431, 12076045453514601679, 15407273036788472813, 11365402888927879361, 16668884373589636511, 13828335850402659011, 13284203923815359527, 17300809842931614721, 16947803187487136093, 18225750745362866369, 9284672876803885567, 14597852340551274989, 16473939500074387811, 14300584548546758897, 10466932272724101787, 14229473210374543483, 13248150377350757731, 9598039034657163599, 12586816162498814623, 11159150798363316113, 16077108181795072301, 11161401146827356863, 17852976451365316379, 16386970647736403383, 16568117397633516523, 17674878979814499799, 14520861146176965691, 10340053725357332591, 9799386102480704957, 16097477422918098601, 13239453234793950397, 17567007567243212159, 14136045876498729691, 11732340248501116493, 10470310463829179399, 12703325772051719383, 13035241397098055021, 17395156339749341267, 9668529469335994589, 14249010465960845651, 16914660786225731381, 12310520468883701851, 16246592021694289649, 13480017886196771549, 14219082481229344661, 11647439617192501739, 12765954006551032897, 10460413869136300141, 13716846676298104453, 14503448822338349359, 11041742165867028397, 11701704236558588467, 17606212925100148273, 12342707180459270959, 15360511526093354189, 11298030030747659447, 12872763047261841389, 18232938457364630449, 14660255297113325941, 11890851251611038169, 16792857595881777097, 11852378876588707279, 15357599751372293533, 17780342512970330669, 14195457757956580333, 10658400270468681989, 15387143294376736159, 10267219662942666551, 11046696135185833781, 13885088134451378279, 10645311967978806011, 17659494527222079353, 12862971250844658743, 15093229194999614917, 16241065349609244691, 17076182031924555031, 10410526641699080551, 14619036188529238943, 16435691426252481919, 17757270819329871647, 9244265187799778663, 18317093359569022523, 11159244222937462369, 12404088147132662621, 12503445554528532469, 11834507189075821319, 16399491741674305727, 17314200642630424609, 12461073769029981829]
def pollard(N):
a = 2
n = 2
for p in primes:
a = powmod(a, p, N)
p = gcd(a-1, N)
if p != 1 and p != N:
return p
p = pollard(n)
q = n // p
m = pow(c, inverse(65537, (p-1)*(q-1)), n)
print(long_to_bytes(m))
#NSSCTF{e9991e0b-ade8-498e-86a9-bf4af9770399}
這裡還需要注意的是,這裡我們只遍歷了一次便成功分解了,則說明再生成p時沒有選取到重複的素因子,如果存在重複的素因子那麼我們得到的數可能不會完美的覆蓋所有因子,此時則需要增加遍歷次數以求覆蓋掉所有因子。即上述代表中的遍歷需要改成
for p in primes+primes:
或者更多。總而言之不管題目如何變化,在p-1光滑攻擊中我們的目的便是覆蓋所有因子即可。
[RSA3]P7(限定範圍的p+1)
題目
from Crypto.Util.number import *
import random
primes = []
for i in range(1000):
primes.append(getPrime(64))
def getMyPrime(nbits: int):
while True:
n = 2
while n.bit_length() < nbits:
n *= random.choice(primes)
if isPrime(n-1):
return n-1
p = getMyPrime(512)
q = getPrime(512)
n = p*q
e = 65537
flag = b'NSSCTF{******}'
c = pow(bytes_to_long(flag), e, n)
print(f'n = {n}')
print(f'c = {c}')
'''
n = 345799778173748173773868120733939877012606206055022173086869626920649670201345540822551954372166638650313660302429331346299033954403991966160361903811355684857744142271007451931591141051285664283723609717718163872529480367508508005122335725499745970420634995317589843507796161899995004285340611933981932785753209168028330041659
c = 246232608531423461212845855125527519175008303736088113629990791124779986502745272419907699490375796645611551466345965328844415806242069890639077695943105766009969737068824735226917926112338655266209848386322013506145057902662138167248624945138207215690482597144303445656882230801297916736896978224496017358461492736283036138486
[11400500846732211437, 15663612686729436797, 16146509422571674241, 10365633794353033223, 17764432204956231427, 10770086682509726701, 9363619846718624519, 9499148531156874869, 11870308229801920153, 9493684235948177053, 13439889213792762493, 13543824553169466691, 16784144744729574109, 10473345639906795589, 11686628555687269949, 13438006849184657287, 10304115634530565157, 14523860318465391989, 9647953497087513131, 14024608681547907539, 14323731752105690329, 9995822499706628503, 17263798266448817081, 17412342258647700379, 17552446328775319979, 18182174233675599269, 10926506070008989781, 11287875928373292151, 13031874421918467239, 12826862978863344077, 14427019901941927789, 10764280028896236377, 15204422422736985733, 18013581759315499403, 16196860580398627489, 12409133067619366927, 16982209362087366071, 13552847891288053379, 13321664796445708301, 13503601532891509847, 15213413154033638143, 15789125900714604107, 9661259098414185323, 10097901158936073103, 12492567105127893229, 9803017918077701719, 14959766528145744073, 16380271870181847503, 12379170631770822511, 11203599319503847699, 11697577879391178041, 14830577847345979507, 15161718518020147133, 9449134020600011261, 13590570970475252977, 14435422638900288329, 12478310842333840183, 17177994464705553637, 15072278791274696881, 15805713015714544379, 18298117834725348649, 16592677662893953627, 10360712314766543039, 12350365014973219109, 10487476039094034247, 9303193137466554371, 14317509909121736027, 10069727352579607261, 15672913494263557921, 12645137927662029131, 12577294286343986777, 17990217715164074353, 11770491954898217693, 16352325276206313631, 14742366552931089511, 17904845678435279687, 14896783599885913301, 11640348097370069257, 10229197144755015913, 16348769379755789849, 14815902973349076617, 15808546541834061079, 16180999769759067937, 11333835834203173919, 14349619526753022311, 10887563403726040387, 14696465704976418401, 16612699690876026649, 9242002307438002549, 13294711665781655819, 17316060056875475509, 16264270500305765159, 10143806453587312567, 10156382001678762061, 13424697447914832193, 9533479368240114361, 17607602236552058431, 9513935785246155433, 9348999429693542821, 10687833447600343907, 13029642955293734383, 12352583868905249059, 10578933735997257233, 14807418828818185841, 12723999174902787061, 11812631981548150111, 9469570721445804379, 10407923494920638191, 10559989029436270817, 12477140185116458017, 16418595676222668931, 18284009827664751383, 16879482079149887887, 10274017234103862649, 11495861205598434163, 13574496359130781637, 16347895315217629291, 11184342831473200427, 15117572072516544349, 11962165465299205687, 12593274795450046759, 10576401623272055507, 14871424922307314839, 9683965597938835439, 15649192958998385653, 14136512522186754793, 16189574870468706193, 10432462783789785083, 9882402816632001041, 17467673636368162091, 17812738031541243181, 16444195776814377667, 14458128171493667993, 10068762164183818769, 16785805107381133639, 14471872315245024047, 15256999419456872801, 11245045254273493879, 12432915941937754661, 16779879208564650527, 13527359679120520799, 13609212316987142881, 12048851866296673223, 9700737321821517313, 14378798305839284857, 9611124475271266561, 13852359141963480583, 11482735530462856063, 15354806409837420893, 13941285484258063727, 14725649345415301957, 14540375648816209781, 15268062151789994279, 10710080489577786817, 15918894791610440369, 13679067272608182587, 12130148919788574667, 14787273033558048851, 16823039346693535453, 9786912554506032653, 12271391359749298573, 10338204530215094879, 17031700055987188007, 13892013056459801951, 16466462551586874361, 15509765092722859157, 17798707991935554641, 16724399949431954029, 13950635476447170409, 11844033699047785357, 14747361128582919509, 14667470964266641091, 12896901039793154849, 15536822808734549341, 12385771205898361763, 12265293491880919333, 9519013453753799311, 10399041997001597659, 16593843155091891947, 12731251001624534627, 15446540709384042589, 9977945635496326949, 16022582598611495171, 11602170089144567501, 14556919126878807737, 13325795480553101047, 12141291839761394549, 11056079849427396533, 9319147679594339663, 14076618445093460089, 13279302183770932003, 15969822774426507863, 15634577535247166641, 18134435225679362561, 13580840906683365127, 16932745671449749507, 13861858882551833521, 17059312054729866107, 16159631686544375273, 13252534105662820201, 12853863943245116791, 15045628398991754593, 16867564338626531897, 15053346821310993907, 15424243202794355417, 12169322810803770263, 17562408967112815189, 14696130091108860479, 16353873170264652727, 18137634119608386217, 13853870828606368123, 12138232181730621971, 17695562390286922187, 11482149834977336341, 11263040235574897391, 17516386258426598267, 11729599409349513977, 16344325675031393033, 9487998624331072613, 15548753174223167923, 16246946533494280441, 15168068556360396767, 10988949668785042289, 16578604258551502499, 14921063374278681199, 17959209918307585553, 13403422202954306417, 11008060381939288823, 11996269609545097451, 14304683665387573597, 15127244416475972951, 14638939931196152921, 13736677778855498231, 17587444419861411713, 9712574859471189721, 11754669647509862399, 13808458314511168667, 14076346964677125061, 14296229481633724123, 10546969810734077257, 13806516637777666997, 11595089909651297627, 15383693545718169527, 11899557291952040539, 11892231220794860827, 18090056242513773299, 16535424213022634657, 13429292459383177121, 10938466758053648591, 13247568010483593953, 14353179575611187827, 17247884385077903059, 15492418843846011163, 13991533281715009171, 10648224887308767149, 13434464420280213799, 18308741750842750223, 16958163859863247583, 17331583790580132911, 16594103882668531169, 15654309992707438321, 12143487125851071209, 13917462550122657373, 14300594316387726833, 11038403267265055433, 11668215065573927149, 16522831969819412009, 15574426807839180587, 9521082951973994111, 11184051603632666453, 17420808937992910057, 12911596655426162347, 14013571659883359853, 9255799220881949201, 10863148313680771943, 15125487406888857311, 10787391261037964801, 11181016652346500041, 12375758200228628333, 11096658214489080743, 14127930959020578487, 11097748121705255807, 9576959296273172197, 10329268625923900369, 12989481583199396267, 11221816342693962053, 11682824873199396701, 9726906501816888893, 14262866113962178411, 9585657969091757713, 11560990155825686603, 15431631822377633897, 9693653500895246153, 18052885089925870411, 12230353179628084643, 11140231161527021251, 11692996241065359677, 17325167313903580247, 13625405742824607707, 9700735722329114107, 17772484003012329121, 14710477009444476553, 11461459386714361369, 9710381370263165737, 14182228639237393261, 15344135038819224257, 13747712780102897047, 18043450369219899473, 10108489789901066423, 18323581078801222739, 11709502836760188211, 14510120896876508611, 10099898624211195287, 17361096065683222901, 15111530145788039651, 16726669802715322249, 15303048960860878433, 12918404780084443421, 10395837535719074069, 14881964221907324279, 14275096296552385127, 16767210669789926149, 16926825798156482309, 12118163891694788129, 9527147805191785667, 15014015486557066933, 16813575270918372811, 9593601949025443639, 13896995817956105537, 13741986219854107753, 11144899659720022073, 18238128043240764319, 12779733553193717153, 12771981722317523603, 17736020578173685219, 9340904375029821481, 17592111347118520843, 13580882292330428401, 15018369925699389031, 17809424700118883129, 11613026101864549847, 17286309683170750757, 15302812145728958509, 15391566078527070121, 9974325230682765697, 11551570786966900967, 11351003337990798203, 11120412046865048101, 9696688946725965169, 15093528920040797497, 18065996667394084837, 13292251568744035337, 11101213198305556951, 17531999985277474517, 15966406176658019221, 10691542704039725009, 14297474600370306949, 13621179047848909531, 12859649057819536667, 15917449527351930353, 9605987875906658413, 14998884139877113397, 9303906426219476507, 9871680222005313013, 18053630596736423699, 18214702298732770603, 15217549802969404841, 17230806139959259801, 9756053496476979851, 13493983446716093807, 15872062367640353111, 10830618212258286257, 13343744885931835489, 15379338915986533049, 16664848187297516537, 15913611403024361401, 16957002785994856157, 16999268043777708043, 15924602242524984389, 11470115363514206713, 17780900375430786271, 17219602318975762861, 15562078753739245099, 14429908225005981979, 16785776318383823977, 9345347283569848891, 9826037803806928201, 14757441108506302691, 16843056852903557147, 12089182103754698633, 13071844903007200927, 13309532659259919281, 12185211383730425707, 17671246663671372547, 15827919662605196687, 13921392459246207437, 14214028972975886279, 10666188887784923113, 15026095328389680481, 14070638370052382317, 11515225275289974647, 12733768797899627857, 15232090050353579959, 9605577513419872349, 11774332933083185117, 13015628182391854561, 12452018187207611071, 10613040759167447969, 16395318189590579111, 9650312608310268509, 16507662966772496023, 9745403684063805119, 15429094458205621159, 13907939611582114601, 14350669162433050921, 12444630576676286983, 12382608458977480781, 13701560178384085519, 14561536331132891843, 17870839403342285053, 17726305914129360941, 18120422155613702203, 11458486193501014487, 15652084560104054171, 16016407186905293131, 12896826502049676533, 13137573987547216019, 11993148289033574989, 12553485329707332011, 9407004537495583253, 16551197209131499807, 12188240888329030727, 13138059982433827393, 9447792088431441973, 13898552597307352607, 13086125839706222777, 11253297961067347699, 12473509293771699973, 12025629766486534463, 9246425606391056513, 10978614475595947261, 15328005120420669143, 15005188618611818149, 14681521764654667837, 18222824871931463471, 13727103721842925123, 11056314452399736701, 14190514709890056683, 16071925700301971681, 14114206274338698617, 11354892818254049171, 15558048570303377969, 9548803747853081857, 17588526935062502339, 10932175915126889777, 14848760934877079473, 16531929394433046437, 11059255418387621143, 15419998777650574619, 18133329784854851773, 9376742948363866007, 10267333769360440369, 10455930081787849081, 11749403554374261673, 12289480767522531263, 9355881077811916589, 16377906719131687771, 12636537540548202157, 15473661167864858659, 12939130785963130559, 10331428178834892869, 18403302396935375239, 12457052115957020359, 16728650241949106683, 15673023018343436269, 14566008317650142029, 10428852531127223779, 12989287388538384809, 10023218474904646751, 10216986934332559607, 11200524499033897849, 17374818422359302449, 11795887296034843123, 16260134950019402467, 15545049906898796849, 13905976122896835137, 18192952532376915133, 15245754103999312679, 14336092681672892797, 16711051263995536291, 10268633000776041389, 16298601116274769289, 12526591346109970043, 11057407454514514777, 17316528792225617197, 18057651102128098207, 16192203874370581303, 10293184135563422201, 9723556212482431513, 18054422790317350181, 17756547295472446751, 11552860515549111289, 13432033735566726419, 12179716429669289003, 14947157147090126191, 16335353494729459423, 15184076846117432761, 14777743253109667273, 13625241580579004263, 10998645430939015469, 13534322946405781903, 11327079738013968217, 17487263803711590509, 13189162879894145159, 13784538619743485863, 17064328079090046263, 9685004881707057761, 16079690295682955971, 13294545125605834661, 10648658009947462261, 18415164681671251511, 10641837226629144139, 15777331516260137267, 11795948058583766659, 15535152465440663291, 17216667014436648943, 9653047732094860031, 11131348011090342127, 16886193462362116063, 15612491590607382593, 10835879650784394071, 13279435351244340899, 16168298479453780489, 16083456466830550283, 11380553957000451991, 15128521211355953573, 10826365584345090827, 11931387899927297363, 16091037230044064021, 16855367086926162211, 11170558557176459503, 9886757544769944653, 11450033604282275011, 11929757603936817763, 17420827560223252171, 10870631368466407877, 13834307981276745037, 10230994628690765197, 14461440966371289941, 14513569082524554649, 15609519179461790747, 12452462947852628413, 11697783772313307211, 10077360532646539567, 15668479810095426521, 14100390060574107281, 16039433251746746399, 11594255700072389497, 11335433960775286819, 17135850578547822607, 17715472259313599723, 9872560666658691277, 13426738927194861001, 9559405911145488401, 9560643982657333219, 11125735716442543571, 14348305982295065537, 17334821829789014189, 12062975303975394341, 17675818288232614691, 12456667873905594329, 11330845594517002613, 16817880606791218753, 9524369250258419267, 14531988631115581537, 9721408134124289899, 16662586589444720647, 11325110890618816411, 10051647873079811617, 14536021166978233733, 12224386731517653097, 17640459671249984461, 16543114235733129481, 12834813684653021713, 13050693286566514921, 16072783334843947421, 16824355675011368569, 9665639317029622411, 15966237013384955239, 14787243991682533471, 14167620861073328777, 16552060845197660033, 14426640096605498107, 11250797705828570411, 12830939822208389821, 15292466542716343963, 9917855814946199189, 10442126201651355433, 12042544592582006819, 13742543708854176911, 12519797425611830609, 12305049189690830747, 13048815356624492777, 17928797470734483373, 9345743880343852493, 17394449011144997203, 14027454725211775843, 15325951436202259889, 14089580406354666877, 14985891805973997229, 15815861666300600207, 13010491061439139729, 17474295865525658119, 10856321689902733963, 15719997391332198931, 11798694284977436299, 11131916950543733651, 14728548632909038181, 15869387205433439081, 10635187834937273627, 14844816583829681107, 10707745831589845607, 16061495585562724741, 13860352348388954479, 13839169685364641087, 10246021025120950757, 17909700734377694141, 11494364438621610881, 16304619707693032889, 13720492814063169997, 12550911015312791057, 18076672670188884121, 10384906691343925679, 16486782778290044783, 12644175422114478653, 14955139942049789357, 16026396184113858703, 10524600442649861959, 11001050498566874027, 9979271448704886613, 13030132484834300659, 15230981971792316689, 15374177218176283253, 14195651389624938953, 10455638721836517437, 15149204128873840301, 12500463654517686493, 13475842347378678719, 12974353406746765043, 18081547614319419917, 13613920396906170893, 18201655698843944801, 9908359973067294049, 12259133230997142013, 13435886340259808407, 17657174880994459697, 13940231287221357463, 16592426911225206653, 13749631155096260533, 13579552974478309459, 9836712372149870281, 17218778541380165767, 10464000360382809991, 16777832929341727297, 15972158110380610507, 15350561171111592953, 9938731346590575421, 17912262447858075839, 16137701207062825711, 15626368583424185491, 10499152290055372079, 9382357912889286797, 14085852927258985099, 18393486728568017383, 10652476457160311261, 10527374223100330091, 17264120882113825487, 10885171609551829193, 16296935971967210533, 17039844827041640479, 16608078020248577041, 9554142078243712343, 12151602751600242503, 18333639542063204713, 12302756704018880831, 11612577899799494441, 13180093129135727227, 15533144054803240961, 17221156035305318801, 11685681018084321637, 13339338584418108371, 16764312293446072699, 9609715328254190099, 12015164966002919969, 17640110779197465353, 16460183428670473871, 13819867905621355469, 11784001662482246243, 10882776393768075541, 12284523803945957717, 11453117866254103187, 10672997245980076939, 9837424460088812963, 9456987736164381311, 16476068953424599633, 10714497365388454843, 11566321267685570027, 12258500729803839241, 13565509018611395453, 9837508107087665041, 10883021385911688053, 13236085185545218621, 12903549664178814119, 9277313810593502131, 15325552562767494059, 15737855390072711723, 12902145372862611967, 16617731535068412919, 16192918114406845313, 13329973263696065593, 15118904191983404627, 9421694107495493981, 14757389355512560711, 11755446033555771161, 11174113824848691089, 9931655160887834537, 13952179663695071047, 14628647895265937389, 13965103496050821571, 12334188065189399611, 15026324919476931311, 13737352569679199609, 17292288948395152463, 9747700181588759561, 13039199615231288567, 15048237407823618463, 11672237438639568239, 10302962861342428331, 12445128229021135679, 14463159840208815601, 13915082057723091419, 17505306824019415949, 12290525908208358407, 18446406381021364073, 11883272894488841837, 13151315617170041119, 9986202098577177283, 11376286496724079633, 17072429507581144597, 11601908054173197833, 12769100713651410277, 11578625980850143169, 15395413375327895911, 13942489248348359849, 16149741548915905429, 13745316489572365673, 9342391586010481007, 13460580618329867983, 15049385889346014431, 13567657641395719637, 9610206585474156637, 18361259735535581597, 16345044279841976141, 10386175636785013831, 10339319734960152623, 17118190675556320687, 10005962451642889201, 14773420480883046503, 11178361855707216889, 17257848339780864089, 17226047946161423507, 16460175468823544401, 15971530319487090739, 14842029296369602163, 15224121827462937979, 9275527308938870173, 17041103378156856689, 13801145680164940003, 10285279638830544209, 13671894824963549641, 16032778609020511861, 9851225257145555347, 9375022299108554971, 14826523109553586027, 17124217400159528447, 10713407734688191177, 12691625640419643317, 15981484460492567717, 9786795565103681819, 12556711015687803709, 11148645018758728049, 13265323147276427401, 13967986650812662373, 17848752154332550457, 9981768723976662007, 14998022968536079123, 12174071201870356879, 11520148746512983013, 12705359135922834167, 16031947192061029513, 12785255613650486969, 17794207197348321059, 16590130444003836701, 13051020119617841899, 18329540394916509391, 17016883109643488021, 12739110953512934191, 17294655201856917067, 11058626020237830707, 9462906708710154961, 14623360900124309369, 11254845081678452897, 14264002816761276253, 13102001758655038643, 12108869081174715287, 17010826574740201271, 14037017483914942313, 13985137272262919353, 9633084395035385983, 17241078172401921151, 16214027901908512283, 16093436048900321317, 14391957124445034917, 12359483645035302161, 10438778853819832753, 10567110128884566343, 10292970247351191901, 16822209722672159149, 13496565983843091859, 11841500670757876693, 11147505811854389987, 14065276166663767481, 15145625093242694749, 14413829172406893583, 16503017312704021103, 11981873548328345323, 11909212497608981689, 10679989447819664377, 12423178332387828413, 14358836553490758151, 10237468755767323591, 9735039457556049641, 9478522344708755909, 17979691433619404903, 17873209010991434147, 9550618472816953163, 13347619619192035741, 14530641313417809089, 13994703746676143779, 9559733892621448897, 10382805841803379711, 11843672223274874071, 16815833185277434981, 12381223102021820597, 15258305081721389239, 15136515056658706363, 18126727588656279323, 10697455619860328677, 9352124924523425581, 17295005245325754503, 14177782902523557389, 16249970306053067029, 17425431521899489447, 9366637040493563183, 14547545849198299667, 16839246487745686313, 10125673509176340733, 16315331794598305291, 18287303257171869707, 14082462954685803851, 15710924897106988277, 9846789987736297901, 12850810892277384811, 9503762183847119159, 12035363414252005649, 12548445170155094227, 9987078241115445023, 11170994807091443339, 11647765960869059809, 10834387862974757999, 9838865006047239157, 12019744644188767517, 14761339868466177863, 10956244424237933677, 10577167950528154373, 18401121224902652879, 17235712984492843111, 18429975080980393459, 16975328717308835227, 16212745888436855227, 15748060839664004279, 10802710007407091591, 18005654473259312323, 17728864727324757541, 9476823236759120071, 15715719744380211089, 11317957584932242129, 14263043570269209481, 11885161440852975761, 12759119296561192847, 16837757861450897923, 11387051211693970223, 12990690679215047009, 15370437666068796491, 9661293882813929899, 16671594122227576891, 12760716047967713053, 15836846371629855617, 15372573498823277741, 13037801868101928847, 9227832155694778921, 12305150816980735891, 15210658418843137207, 16788466837458690557, 9762486133521181153, 13371940588733082221, 10152546759088309507, 10848887643327358249, 17205964303284825847, 12583799778495365419, 9672644823779940799, 16479122731650726673, 11829095825108299229, 16856643509258471717, 17729801070393904861, 12446898694377908053, 15647792035238488259, 15262980088834134317, 14842714080641230361, 11892658365659114837, 15543608752847397577, 18134628238866132559, 17281754915383504451, 14880763471671790447, 18365273826942699029, 10593576240664735397, 13738012363336486327, 10585528712941671061, 15236197766771889647, 12962016451203849439, 10115648256105130097, 18284391657729233963, 10065785450550899873, 14857920561664507949, 16030693837709372611, 13900562821391763329, 12228162083162590063, 11182799187528291871, 10214055412817190283, 15460696099737060427, 12382626153236584387, 15465251424009421147, 16965031217756582281, 14126243176626361657, 18080871035396853247, 12890579554268090071, 12213352895923847441, 11657388029153192717, 10594146346641284267, 10061199141387371213, 11654321642876196877, 9824908207222632341, 9667965027898668031, 15337259287380080431, 11343809882060699179, 14165912342048965513, 11858958254391153371, 14644267317090978181, 15243216027706161023, 12709086352105620721, 12699306874452850307, 9623280468372066131, 12147185253639241291, 16601705326867205539, 10344891266561865029, 9295392664898294891, 11337442576012179707, 12437074606171059809, 16257047214863286941, 15963251223708366749, 9796716955285549447, 15639176349316312987, 9957650134111703227, 13427963685313160311, 14969656757466500147, 15214704302669139497, 16883998205231447767, 9582306718565802677, 18213300288961503953, 10133964032925729329, 13921564103985671879, 18189260807943763691, 15990390439904555291, 13338552747826262603, 10004697650349190067, 14464165999372352189, 9264423096518569807, 16223738667762317267, 12581099710736152931, 16783603748986153523]
'''
我的解答:
完成了P6再看此題你應該能明白該如何解題了,本題屬於P+1光滑攻擊進階題目,和上題一樣,本題的素因子被限定在了一個給定的集合中。
在之前我們並沒有詳細的介紹P+1光滑攻擊,因為其中引入了擴充套件盧卡斯序列,涉及許多的引理和推論,故將P+1光滑攻擊原理作為擴充套件資料自行學習。在這裡我們稍微理解一下P+1光滑攻擊的原理
我們將p看作
則我們有p∣Us(Pm),而這裡的Us(Pm)便涉及擴充套件盧卡斯序列,你會發現其實和p−1光滑攻擊類似,只是p−1是利用費馬小定理得到整除關係,而這裡是利用擴充套件盧卡斯得到整除關係,我們只需要知道它也是和p+1的每個素因子有關即可。所以我們只需要替換p+1光滑攻擊程式碼中涉及素因子部分的程式碼即可。
exp:
from itertools import count
from Crypto.Util.number import *
from gmpy2 import *
n = 345799778173748173773868120733939877012606206055022173086869626920649670201345540822551954372166638650313660302429331346299033954403991966160361903811355684857744142271007451931591141051285664283723609717718163872529480367508508005122335725499745970420634995317589843507796161899995004285340611933981932785753209168028330041659
c = 246232608531423461212845855125527519175008303736088113629990791124779986502745272419907699490375796645611551466345965328844415806242069890639077695943105766009969737068824735226917926112338655266209848386322013506145057902662138167248624945138207215690482597144303445656882230801297916736896978224496017358461492736283036138486
primes = [11400500846732211437, 15663612686729436797, 16146509422571674241, 10365633794353033223, 17764432204956231427, 10770086682509726701, 9363619846718624519, 9499148531156874869, 11870308229801920153, 9493684235948177053, 13439889213792762493, 13543824553169466691, 16784144744729574109, 10473345639906795589, 11686628555687269949, 13438006849184657287, 10304115634530565157, 14523860318465391989, 9647953497087513131, 14024608681547907539, 14323731752105690329, 9995822499706628503, 17263798266448817081, 17412342258647700379, 17552446328775319979, 18182174233675599269, 10926506070008989781, 11287875928373292151, 13031874421918467239, 12826862978863344077, 14427019901941927789, 10764280028896236377, 15204422422736985733, 18013581759315499403, 16196860580398627489, 12409133067619366927, 16982209362087366071, 13552847891288053379, 13321664796445708301, 13503601532891509847, 15213413154033638143, 15789125900714604107, 9661259098414185323, 10097901158936073103, 12492567105127893229, 9803017918077701719, 14959766528145744073, 16380271870181847503, 12379170631770822511, 11203599319503847699, 11697577879391178041, 14830577847345979507, 15161718518020147133, 9449134020600011261, 13590570970475252977, 14435422638900288329, 12478310842333840183, 17177994464705553637, 15072278791274696881, 15805713015714544379, 18298117834725348649, 16592677662893953627, 10360712314766543039, 12350365014973219109, 10487476039094034247, 9303193137466554371, 14317509909121736027, 10069727352579607261, 15672913494263557921, 12645137927662029131, 12577294286343986777, 17990217715164074353, 11770491954898217693, 16352325276206313631, 14742366552931089511, 17904845678435279687, 14896783599885913301, 11640348097370069257, 10229197144755015913, 16348769379755789849, 14815902973349076617, 15808546541834061079, 16180999769759067937, 11333835834203173919, 14349619526753022311, 10887563403726040387, 14696465704976418401, 16612699690876026649, 9242002307438002549, 13294711665781655819, 17316060056875475509, 16264270500305765159, 10143806453587312567, 10156382001678762061, 13424697447914832193, 9533479368240114361, 17607602236552058431, 9513935785246155433, 9348999429693542821, 10687833447600343907, 13029642955293734383, 12352583868905249059, 10578933735997257233, 14807418828818185841, 12723999174902787061, 11812631981548150111, 9469570721445804379, 10407923494920638191, 10559989029436270817, 12477140185116458017, 16418595676222668931, 18284009827664751383, 16879482079149887887, 10274017234103862649, 11495861205598434163, 13574496359130781637, 16347895315217629291, 11184342831473200427, 15117572072516544349, 11962165465299205687, 12593274795450046759, 10576401623272055507, 14871424922307314839, 9683965597938835439, 15649192958998385653, 14136512522186754793, 16189574870468706193, 10432462783789785083, 9882402816632001041, 17467673636368162091, 17812738031541243181, 16444195776814377667, 14458128171493667993, 10068762164183818769, 16785805107381133639, 14471872315245024047, 15256999419456872801, 11245045254273493879, 12432915941937754661, 16779879208564650527, 13527359679120520799, 13609212316987142881, 12048851866296673223, 9700737321821517313, 14378798305839284857, 9611124475271266561, 13852359141963480583, 11482735530462856063, 15354806409837420893, 13941285484258063727, 14725649345415301957, 14540375648816209781, 15268062151789994279, 10710080489577786817, 15918894791610440369, 13679067272608182587, 12130148919788574667, 14787273033558048851, 16823039346693535453, 9786912554506032653, 12271391359749298573, 10338204530215094879, 17031700055987188007, 13892013056459801951, 16466462551586874361, 15509765092722859157, 17798707991935554641, 16724399949431954029, 13950635476447170409, 11844033699047785357, 14747361128582919509, 14667470964266641091, 12896901039793154849, 15536822808734549341, 12385771205898361763, 12265293491880919333, 9519013453753799311, 10399041997001597659, 16593843155091891947, 12731251001624534627, 15446540709384042589, 9977945635496326949, 16022582598611495171, 11602170089144567501, 14556919126878807737, 13325795480553101047, 12141291839761394549, 11056079849427396533, 9319147679594339663, 14076618445093460089, 13279302183770932003, 15969822774426507863, 15634577535247166641, 18134435225679362561, 13580840906683365127, 16932745671449749507, 13861858882551833521, 17059312054729866107, 16159631686544375273, 13252534105662820201, 12853863943245116791, 15045628398991754593, 16867564338626531897, 15053346821310993907, 15424243202794355417, 12169322810803770263, 17562408967112815189, 14696130091108860479, 16353873170264652727, 18137634119608386217, 13853870828606368123, 12138232181730621971, 17695562390286922187, 11482149834977336341, 11263040235574897391, 17516386258426598267, 11729599409349513977, 16344325675031393033, 9487998624331072613, 15548753174223167923, 16246946533494280441, 15168068556360396767, 10988949668785042289, 16578604258551502499, 14921063374278681199, 17959209918307585553, 13403422202954306417, 11008060381939288823, 11996269609545097451, 14304683665387573597, 15127244416475972951, 14638939931196152921, 13736677778855498231, 17587444419861411713, 9712574859471189721, 11754669647509862399, 13808458314511168667, 14076346964677125061, 14296229481633724123, 10546969810734077257, 13806516637777666997, 11595089909651297627, 15383693545718169527, 11899557291952040539, 11892231220794860827, 18090056242513773299, 16535424213022634657, 13429292459383177121, 10938466758053648591, 13247568010483593953, 14353179575611187827, 17247884385077903059, 15492418843846011163, 13991533281715009171, 10648224887308767149, 13434464420280213799, 18308741750842750223, 16958163859863247583, 17331583790580132911, 16594103882668531169, 15654309992707438321, 12143487125851071209, 13917462550122657373, 14300594316387726833, 11038403267265055433, 11668215065573927149, 16522831969819412009, 15574426807839180587, 9521082951973994111, 11184051603632666453, 17420808937992910057, 12911596655426162347, 14013571659883359853, 9255799220881949201, 10863148313680771943, 15125487406888857311, 10787391261037964801, 11181016652346500041, 12375758200228628333, 11096658214489080743, 14127930959020578487, 11097748121705255807, 9576959296273172197, 10329268625923900369, 12989481583199396267, 11221816342693962053, 11682824873199396701, 9726906501816888893, 14262866113962178411, 9585657969091757713, 11560990155825686603, 15431631822377633897, 9693653500895246153, 18052885089925870411, 12230353179628084643, 11140231161527021251, 11692996241065359677, 17325167313903580247, 13625405742824607707, 9700735722329114107, 17772484003012329121, 14710477009444476553, 11461459386714361369, 9710381370263165737, 14182228639237393261, 15344135038819224257, 13747712780102897047, 18043450369219899473, 10108489789901066423, 18323581078801222739, 11709502836760188211, 14510120896876508611, 10099898624211195287, 17361096065683222901, 15111530145788039651, 16726669802715322249, 15303048960860878433, 12918404780084443421, 10395837535719074069, 14881964221907324279, 14275096296552385127, 16767210669789926149, 16926825798156482309, 12118163891694788129, 9527147805191785667, 15014015486557066933, 16813575270918372811, 9593601949025443639, 13896995817956105537, 13741986219854107753, 11144899659720022073, 18238128043240764319, 12779733553193717153, 12771981722317523603, 17736020578173685219, 9340904375029821481, 17592111347118520843, 13580882292330428401, 15018369925699389031, 17809424700118883129, 11613026101864549847, 17286309683170750757, 15302812145728958509, 15391566078527070121, 9974325230682765697, 11551570786966900967, 11351003337990798203, 11120412046865048101, 9696688946725965169, 15093528920040797497, 18065996667394084837, 13292251568744035337, 11101213198305556951, 17531999985277474517, 15966406176658019221, 10691542704039725009, 14297474600370306949, 13621179047848909531, 12859649057819536667, 15917449527351930353, 9605987875906658413, 14998884139877113397, 9303906426219476507, 9871680222005313013, 18053630596736423699, 18214702298732770603, 15217549802969404841, 17230806139959259801, 9756053496476979851, 13493983446716093807, 15872062367640353111, 10830618212258286257, 13343744885931835489, 15379338915986533049, 16664848187297516537, 15913611403024361401, 16957002785994856157, 16999268043777708043, 15924602242524984389, 11470115363514206713, 17780900375430786271, 17219602318975762861, 15562078753739245099, 14429908225005981979, 16785776318383823977, 9345347283569848891, 9826037803806928201, 14757441108506302691, 16843056852903557147, 12089182103754698633, 13071844903007200927, 13309532659259919281, 12185211383730425707, 17671246663671372547, 15827919662605196687, 13921392459246207437, 14214028972975886279, 10666188887784923113, 15026095328389680481, 14070638370052382317, 11515225275289974647, 12733768797899627857, 15232090050353579959, 9605577513419872349, 11774332933083185117, 13015628182391854561, 12452018187207611071, 10613040759167447969, 16395318189590579111, 9650312608310268509, 16507662966772496023, 9745403684063805119, 15429094458205621159, 13907939611582114601, 14350669162433050921, 12444630576676286983, 12382608458977480781, 13701560178384085519, 14561536331132891843, 17870839403342285053, 17726305914129360941, 18120422155613702203, 11458486193501014487, 15652084560104054171, 16016407186905293131, 12896826502049676533, 13137573987547216019, 11993148289033574989, 12553485329707332011, 9407004537495583253, 16551197209131499807, 12188240888329030727, 13138059982433827393, 9447792088431441973, 13898552597307352607, 13086125839706222777, 11253297961067347699, 12473509293771699973, 12025629766486534463, 9246425606391056513, 10978614475595947261, 15328005120420669143, 15005188618611818149, 14681521764654667837, 18222824871931463471, 13727103721842925123, 11056314452399736701, 14190514709890056683, 16071925700301971681, 14114206274338698617, 11354892818254049171, 15558048570303377969, 9548803747853081857, 17588526935062502339, 10932175915126889777, 14848760934877079473, 16531929394433046437, 11059255418387621143, 15419998777650574619, 18133329784854851773, 9376742948363866007, 10267333769360440369, 10455930081787849081, 11749403554374261673, 12289480767522531263, 9355881077811916589, 16377906719131687771, 12636537540548202157, 15473661167864858659, 12939130785963130559, 10331428178834892869, 18403302396935375239, 12457052115957020359, 16728650241949106683, 15673023018343436269, 14566008317650142029, 10428852531127223779, 12989287388538384809, 10023218474904646751, 10216986934332559607, 11200524499033897849, 17374818422359302449, 11795887296034843123, 16260134950019402467, 15545049906898796849, 13905976122896835137, 18192952532376915133, 15245754103999312679, 14336092681672892797, 16711051263995536291, 10268633000776041389, 16298601116274769289, 12526591346109970043, 11057407454514514777, 17316528792225617197, 18057651102128098207, 16192203874370581303, 10293184135563422201, 9723556212482431513, 18054422790317350181, 17756547295472446751, 11552860515549111289, 13432033735566726419, 12179716429669289003, 14947157147090126191, 16335353494729459423, 15184076846117432761, 14777743253109667273, 13625241580579004263, 10998645430939015469, 13534322946405781903, 11327079738013968217, 17487263803711590509, 13189162879894145159, 13784538619743485863, 17064328079090046263, 9685004881707057761, 16079690295682955971, 13294545125605834661, 10648658009947462261, 18415164681671251511, 10641837226629144139, 15777331516260137267, 11795948058583766659, 15535152465440663291, 17216667014436648943, 9653047732094860031, 11131348011090342127, 16886193462362116063, 15612491590607382593, 10835879650784394071, 13279435351244340899, 16168298479453780489, 16083456466830550283, 11380553957000451991, 15128521211355953573, 10826365584345090827, 11931387899927297363, 16091037230044064021, 16855367086926162211, 11170558557176459503, 9886757544769944653, 11450033604282275011, 11929757603936817763, 17420827560223252171, 10870631368466407877, 13834307981276745037, 10230994628690765197, 14461440966371289941, 14513569082524554649, 15609519179461790747, 12452462947852628413, 11697783772313307211, 10077360532646539567, 15668479810095426521, 14100390060574107281, 16039433251746746399, 11594255700072389497, 11335433960775286819, 17135850578547822607, 17715472259313599723, 9872560666658691277, 13426738927194861001, 9559405911145488401, 9560643982657333219, 11125735716442543571, 14348305982295065537, 17334821829789014189, 12062975303975394341, 17675818288232614691, 12456667873905594329, 11330845594517002613, 16817880606791218753, 9524369250258419267, 14531988631115581537, 9721408134124289899, 16662586589444720647, 11325110890618816411, 10051647873079811617, 14536021166978233733, 12224386731517653097, 17640459671249984461, 16543114235733129481, 12834813684653021713, 13050693286566514921, 16072783334843947421, 16824355675011368569, 9665639317029622411, 15966237013384955239, 14787243991682533471, 14167620861073328777, 16552060845197660033, 14426640096605498107, 11250797705828570411, 12830939822208389821, 15292466542716343963, 9917855814946199189, 10442126201651355433, 12042544592582006819, 13742543708854176911, 12519797425611830609, 12305049189690830747, 13048815356624492777, 17928797470734483373, 9345743880343852493, 17394449011144997203, 14027454725211775843, 15325951436202259889, 14089580406354666877, 14985891805973997229, 15815861666300600207, 13010491061439139729, 17474295865525658119, 10856321689902733963, 15719997391332198931, 11798694284977436299, 11131916950543733651, 14728548632909038181, 15869387205433439081, 10635187834937273627, 14844816583829681107, 10707745831589845607, 16061495585562724741, 13860352348388954479, 13839169685364641087, 10246021025120950757, 17909700734377694141, 11494364438621610881, 16304619707693032889, 13720492814063169997, 12550911015312791057, 18076672670188884121, 10384906691343925679, 16486782778290044783, 12644175422114478653, 14955139942049789357, 16026396184113858703, 10524600442649861959, 11001050498566874027, 9979271448704886613, 13030132484834300659, 15230981971792316689, 15374177218176283253, 14195651389624938953, 10455638721836517437, 15149204128873840301, 12500463654517686493, 13475842347378678719, 12974353406746765043, 18081547614319419917, 13613920396906170893, 18201655698843944801, 9908359973067294049, 12259133230997142013, 13435886340259808407, 17657174880994459697, 13940231287221357463, 16592426911225206653, 13749631155096260533, 13579552974478309459, 9836712372149870281, 17218778541380165767, 10464000360382809991, 16777832929341727297, 15972158110380610507, 15350561171111592953, 9938731346590575421, 17912262447858075839, 16137701207062825711, 15626368583424185491, 10499152290055372079, 9382357912889286797, 14085852927258985099, 18393486728568017383, 10652476457160311261, 10527374223100330091, 17264120882113825487, 10885171609551829193, 16296935971967210533, 17039844827041640479, 16608078020248577041, 9554142078243712343, 12151602751600242503, 18333639542063204713, 12302756704018880831, 11612577899799494441, 13180093129135727227, 15533144054803240961, 17221156035305318801, 11685681018084321637, 13339338584418108371, 16764312293446072699, 9609715328254190099, 12015164966002919969, 17640110779197465353, 16460183428670473871, 13819867905621355469, 11784001662482246243, 10882776393768075541, 12284523803945957717, 11453117866254103187, 10672997245980076939, 9837424460088812963, 9456987736164381311, 16476068953424599633, 10714497365388454843, 11566321267685570027, 12258500729803839241, 13565509018611395453, 9837508107087665041, 10883021385911688053, 13236085185545218621, 12903549664178814119, 9277313810593502131, 15325552562767494059, 15737855390072711723, 12902145372862611967, 16617731535068412919, 16192918114406845313, 13329973263696065593, 15118904191983404627, 9421694107495493981, 14757389355512560711, 11755446033555771161, 11174113824848691089, 9931655160887834537, 13952179663695071047, 14628647895265937389, 13965103496050821571, 12334188065189399611, 15026324919476931311, 13737352569679199609, 17292288948395152463, 9747700181588759561, 13039199615231288567, 15048237407823618463, 11672237438639568239, 10302962861342428331, 12445128229021135679, 14463159840208815601, 13915082057723091419, 17505306824019415949, 12290525908208358407, 18446406381021364073, 11883272894488841837, 13151315617170041119, 9986202098577177283, 11376286496724079633, 17072429507581144597, 11601908054173197833, 12769100713651410277, 11578625980850143169, 15395413375327895911, 13942489248348359849, 16149741548915905429, 13745316489572365673, 9342391586010481007, 13460580618329867983, 15049385889346014431, 13567657641395719637, 9610206585474156637, 18361259735535581597, 16345044279841976141, 10386175636785013831, 10339319734960152623, 17118190675556320687, 10005962451642889201, 14773420480883046503, 11178361855707216889, 17257848339780864089, 17226047946161423507, 16460175468823544401, 15971530319487090739, 14842029296369602163, 15224121827462937979, 9275527308938870173, 17041103378156856689, 13801145680164940003, 10285279638830544209, 13671894824963549641, 16032778609020511861, 9851225257145555347, 9375022299108554971, 14826523109553586027, 17124217400159528447, 10713407734688191177, 12691625640419643317, 15981484460492567717, 9786795565103681819, 12556711015687803709, 11148645018758728049, 13265323147276427401, 13967986650812662373, 17848752154332550457, 9981768723976662007, 14998022968536079123, 12174071201870356879, 11520148746512983013, 12705359135922834167, 16031947192061029513, 12785255613650486969, 17794207197348321059, 16590130444003836701, 13051020119617841899, 18329540394916509391, 17016883109643488021, 12739110953512934191, 17294655201856917067, 11058626020237830707, 9462906708710154961, 14623360900124309369, 11254845081678452897, 14264002816761276253, 13102001758655038643, 12108869081174715287, 17010826574740201271, 14037017483914942313, 13985137272262919353, 9633084395035385983, 17241078172401921151, 16214027901908512283, 16093436048900321317, 14391957124445034917, 12359483645035302161, 10438778853819832753, 10567110128884566343, 10292970247351191901, 16822209722672159149, 13496565983843091859, 11841500670757876693, 11147505811854389987, 14065276166663767481, 15145625093242694749, 14413829172406893583, 16503017312704021103, 11981873548328345323, 11909212497608981689, 10679989447819664377, 12423178332387828413, 14358836553490758151, 10237468755767323591, 9735039457556049641, 9478522344708755909, 17979691433619404903, 17873209010991434147, 9550618472816953163, 13347619619192035741, 14530641313417809089, 13994703746676143779, 9559733892621448897, 10382805841803379711, 11843672223274874071, 16815833185277434981, 12381223102021820597, 15258305081721389239, 15136515056658706363, 18126727588656279323, 10697455619860328677, 9352124924523425581, 17295005245325754503, 14177782902523557389, 16249970306053067029, 17425431521899489447, 9366637040493563183, 14547545849198299667, 16839246487745686313, 10125673509176340733, 16315331794598305291, 18287303257171869707, 14082462954685803851, 15710924897106988277, 9846789987736297901, 12850810892277384811, 9503762183847119159, 12035363414252005649, 12548445170155094227, 9987078241115445023, 11170994807091443339, 11647765960869059809, 10834387862974757999, 9838865006047239157, 12019744644188767517, 14761339868466177863, 10956244424237933677, 10577167950528154373, 18401121224902652879, 17235712984492843111, 18429975080980393459, 16975328717308835227, 16212745888436855227, 15748060839664004279, 10802710007407091591, 18005654473259312323, 17728864727324757541, 9476823236759120071, 15715719744380211089, 11317957584932242129, 14263043570269209481, 11885161440852975761, 12759119296561192847, 16837757861450897923, 11387051211693970223, 12990690679215047009, 15370437666068796491, 9661293882813929899, 16671594122227576891, 12760716047967713053, 15836846371629855617, 15372573498823277741, 13037801868101928847, 9227832155694778921, 12305150816980735891, 15210658418843137207, 16788466837458690557, 9762486133521181153, 13371940588733082221, 10152546759088309507, 10848887643327358249, 17205964303284825847, 12583799778495365419, 9672644823779940799, 16479122731650726673, 11829095825108299229, 16856643509258471717, 17729801070393904861, 12446898694377908053, 15647792035238488259, 15262980088834134317, 14842714080641230361, 11892658365659114837, 15543608752847397577, 18134628238866132559, 17281754915383504451, 14880763471671790447, 18365273826942699029, 10593576240664735397, 13738012363336486327, 10585528712941671061, 15236197766771889647, 12962016451203849439, 10115648256105130097, 18284391657729233963, 10065785450550899873, 14857920561664507949, 16030693837709372611, 13900562821391763329, 12228162083162590063, 11182799187528291871, 10214055412817190283, 15460696099737060427, 12382626153236584387, 15465251424009421147, 16965031217756582281, 14126243176626361657, 18080871035396853247, 12890579554268090071, 12213352895923847441, 11657388029153192717, 10594146346641284267, 10061199141387371213, 11654321642876196877, 9824908207222632341, 9667965027898668031, 15337259287380080431, 11343809882060699179, 14165912342048965513, 11858958254391153371, 14644267317090978181, 15243216027706161023, 12709086352105620721, 12699306874452850307, 9623280468372066131, 12147185253639241291, 16601705326867205539, 10344891266561865029, 9295392664898294891, 11337442576012179707, 12437074606171059809, 16257047214863286941, 15963251223708366749, 9796716955285549447, 15639176349316312987, 9957650134111703227, 13427963685313160311, 14969656757466500147, 15214704302669139497, 16883998205231447767, 9582306718565802677, 18213300288961503953, 10133964032925729329, 13921564103985671879, 18189260807943763691, 15990390439904555291, 13338552747826262603, 10004697650349190067, 14464165999372352189, 9264423096518569807, 16223738667762317267, 12581099710736152931, 16783603748986153523]
def mlucas(v, a, n):
""" Helper function for williams_pp1(). Multiplies along a Lucas sequence modulo n. """
v1, v2 = v, (v ** 2 - 2) % n
for bit in bin(a)[3:]: v1, v2 = ((v1 ** 2 - 2) % n, (v1 * v2 - v) % n) if bit == "0" else (
(v1 * v2 - v) % n, (v2 ** 2 - 2) % n)
return v1
def ilog(x, b): # greatest integer l such that b**l <= x.
l = 0
while x >= b:
x /= b
l += 1
return l
def williams(n):
for v in count(1):
for p in primes:
e = ilog(isqrt(n), p)
if e == 0:
break
for _ in range(e):
v = mlucas(v, p, n)
g = gcd(v - 2, n)
if 1 < g < n:
return int(g), int(n // g) # g|n
if g == n:
break
p, q = williams(n)
m = pow(c, inverse(65537, (p-1)*(q-1)), n)
print(long_to_bytes(m))
#NSSCTF{e9991e0b-498e-ade8-86a9-bf4af9770399}
[RSA3]P8(共模攻擊進階)
題目
from Crypto.Util.number import *
p = getPrime(700)
q = getPrime(700)
n = p*q
e1 = 3*getPrime(16)
e2 = 3*getPrime(16)
flag = b'NSSCTF{******}'
c1 = pow(bytes_to_long(flag), e1, n)
c2 = pow(bytes_to_long(flag), e2, n)
print(f'n = {n}')
print(f'e1 = {e1}')
print(f'e2 = {e2}')
print(f'c1 = {c1}')
print(f'c2 = {c2}')
'''
n = 17258060066893213074755453373218306582162826137762311133274776357570753221703880922246758313805944651653670388312409120584883194670296622866672717977722186711567375015117429341498055534372807872455441738225834253639068425012163751145785603722177526607324435641434593514768226599401862097301050185867830575469303960864978407638846270971263106481892520999227504152184478241946941685206875783621912245612463394268401327595737
e1 = 159897
e2 = 192273
c1 = 4595717262826082372249114022806610849627020753616385658397281529962210282956290111008418210778140550163959636029533312923781864970753502714169965973507425352493857361069899079130259227540344021591878554631845093918021212295485108865566378903346061480239406752062655328184620669486561050933167981474236084817766063901438798437061213111422401822238367462990085699301757131570089105471117732589635966783817714928153442984943
c2 = 6930904879823636264189052321687613173304614320999504775391013591790100775422558030373964338538540537224825701022993433544854997668153296576460906623734663341340853498020227553815076511099480950225109778895193096753014911735040516576988675988526232648772153671745762684830032445024652478629766700037603250123679920127263565322009118867116958069937438887437206234970465675161823446396025302570020058273271974621280101050077
'''
我的解答:
很顯然這是一道共模攻擊進階題目,不過還是和其他例題一樣直接套用模板得到答案,原因還是這裡的e1和e2並不互素,是的本題又和擴充套件歐幾里得有關。
這也是為什麼我們大費周章的在前面介紹擴充套件歐幾里得,在本系列課程中,我們會選擇性的著重講解一些非常非常重要的思想和定理,所以如果某個思想或定理我們千百遍不厭其煩的進行提及那麼則說明它是你更進一步的必經之路。如果你不能還沒有掌握那些則暫時不要好高騖遠,應該靜下心來潛心學習。而對於其他不是太過重要的內容,例如P+1光滑攻擊涉及的擴充套件盧卡斯,我們不會做過多講解和介紹,你大可只需知道有這個東西即可,當然若是你自己的學習、研究路線涉及那些內容,你也可以透過我們給出的資料和方向進行研究學習。
回到本題,實際本題和以前很多題一樣,我們將m3e看成(m3)e即可,這樣我們便得到了兩個互素的加密指數,再做共模攻擊便可以解得m3,再進行開方即可。
from Crypto.Util.number import *
from gmpy2 import *
n = 17258060066893213074755453373218306582162826137762311133274776357570753221703880922246758313805944651653670388312409120584883194670296622866672717977722186711567375015117429341498055534372807872455441738225834253639068425012163751145785603722177526607324435641434593514768226599401862097301050185867830575469303960864978407638846270971263106481892520999227504152184478241946941685206875783621912245612463394268401327595737
e1 = 159897
e2 = 192273
c1 = 4595717262826082372249114022806610849627020753616385658397281529962210282956290111008418210778140550163959636029533312923781864970753502714169965973507425352493857361069899079130259227540344021591878554631845093918021212295485108865566378903346061480239406752062655328184620669486561050933167981474236084817766063901438798437061213111422401822238367462990085699301757131570089105471117732589635966783817714928153442984943
c2 = 6930904879823636264189052321687613173304614320999504775391013591790100775422558030373964338538540537224825701022993433544854997668153296576460906623734663341340853498020227553815076511099480950225109778895193096753014911735040516576988675988526232648772153671745762684830032445024652478629766700037603250123679920127263565322009118867116958069937438887437206234970465675161823446396025302570020058273271974621280101050077
_, s1, s2 = gcdext(e1, e2)
m = powmod(c1, s1, n) * powmod(c2, s2, n) % n
print(long_to_bytes(iroot(m, 3)[0]))
#NSSCTF{9f6c0e27-0c56-4612-974f-b781c06663fa}
[RSA3]P9(AMM演算法)
題目
from Crypto.Util.number import *
import os
from gmpy2 import *
def getMyPrime(nbits):
while True:
n = 2*1009*getPrime(nbits//2)*getPrime(nbits//2)
if is_prime(n+1):
return n+1
p = getMyPrime(700)
q = getMyPrime(700)
n = p*q
e = 1009
flag = b'NSSCTF{******}' + os.urandom(100)
m = bytes_to_long(flag)
assert m.bit_length() < n.bit_length()
c = pow(m, e, n)
print(f'n = {n}')
print(f'c = {c}')
print(f'p = {p}')
print(f'q = {q}')
'''
n = 38041020633815871156456469733983765765506895617311762629687651104582466286930269704125415948922860928755218376007606985275046819516740493733602776653724917044661666016759231716059415706703608364873041098478331738686843910748962386378250780017056206432910543374411668835255040201640020726710967482627384460424737495938659004753604600674521079949545966815918391090355556787926276553281009472950401599151788863393804355849499551329
c = 2252456587771662978440183865248648532442503596913181525329434089345680311102588580009450289493044848004270703980243056178363045412903946651952904162045861994915982599488021388197891419171012611795147125799759947942753772847866647801312816514803861011346523945623870123406891646751226481676463538137263366023714001998348605629756519894600802504515051642140147685496526829541501501664072723281466792594858474882239889529245732945
p = 5220649501756432310453173296020153841505609640978826669340282938895377093244978215488158231209243571089268416199675077647719021740691293187913372884975853901554910056350739745148711689601574920977808625399309470283
q = 7286645200183879820325990521698389973072307061827784645416472106180161656047009812712987400850001340478084529480635891468153462119149259083604029658605921695587836792877281924620444742434168448594010024363257554563
'''
我的解答:
熟悉的套路,不一樣的味道,本題我們發現e和phi又不互素,之前我們遇到此類題型時可以分解成因子求解然後再CRT,但是這裡我們發現e和每個因子的尤拉值即p−1和q−1也不互素,如之奈何?
這裡我們便要了解不互素的情況如何開方,即AMM演算法
AMM全稱為Adleman-Mander-Miller Method
,原演算法只涉及了開平方根的方法,後續在論文https://arxiv.org/pdf/1111.4877.pdf
補充了開n次方的方法
我們先來考慮平方根,實際上AMM開平方根的思路和Tonelli-Shanks演算法一樣,這個演算法在本系列LCG課程中有介紹,它也是一種開平方根的演算法。
對於x2≡r(modp),則說明r是p的一個二次剩餘,令p−1=2sq,我們有
關於二次剩餘和上式的證明見Rabin攻擊。
如果這裡的s=1的話,則我們直接有
是不是在那見過,實際上這就是Rabin裡面的開方過程,在Rabin中有p≡3(mod4),即p=3+4k也就是p=2(1+2k),那麼也就是p−1=2q的情況。對於其他情況兩邊開根得到
因為開根存在倆個結果,所以我們再乘上一個非二次剩餘項即迭代過程中的n(2**(s−1))*qk,這有什麼用呢,我們透過控制這項中的k,如果k=0,則乘上的就是n0=1,如果k=1則n(2**(s−1))*q≡−1,便可以得到
這樣便消除了−1根的影響,我們不斷迭代這個過程,直到
此時乘上r再開平方得到
這樣我們便得到了x的解,當然−x即p−x也是一個解。
這裡你可能又會有一個疑惑,在迭代過程中不是有
直接這裡兩邊乘r開根不就行了嗎?我們可以試試
之前我們說了2sq+1=p,現在請考慮
是多少,很顯然我們無法判斷這個數是否存在,例如23⋅5+1=41,但(23−2⋅5+1)/2=11/2,而我們所有的運算都是在整數域上的,是不存在小數這個概念的,所以此時對應的原式實際上是不存在的,因為根本沒有這個數,式子只是為了顯示我們推演過程中的中間步驟,所以我們不知道迭代過程中哪一步能夠使得存在,但只要他們滿足式子同餘1時我們才可以代入乘上r開根計算。
這裡還存在一個誤區,11/2不存在那計算11⋅2−1不就行了,顯然這是被之前同餘的概念所影響,在進行同餘的性質運算時要注意同餘的位置,我們現在的計算位置在指數上,若是學習過之前RSA課程的同學應該還記得我們之前講過指數上和底數同餘方程如何等價
即a1r≡a2r(mod n)等價r1≡r2(mod φ(n)),所以這裡你要進行同餘替換時2−1是模φ(p)=p−1下的逆元,而顯然gcd(2,p−1)=2,所以逆元是不存在的。
對於任意次方,即xe≡r(mod p),此時分為兩組情況
1.gcd(e,p−1)=1
顯然我們每天的RSA都屬於這種情況,直接透過求逆元當作RSA解密即可。
2.e∣(p−1)
令p−1=esq,同時因為e也是p的e-次剩餘,所以同理有
(高次剩餘的性質和二次剩餘類似,證明過程也相同,同學可參照二次剩餘自行推導)
同樣的我們找到一個數δ滿足q∣(eδ−1),此時我們有
同樣的,如果這裡s=1,我們也直接有
否則我們再取一個e-次非剩餘ρ,即滿足ρ(p−1)/e≡−1(mod p)。
令集合K=K0,K1,…,Ke−1為
此時我們直到Ki≠Kj (i≠j)即互不相等,且
同時我們還有
其實上述內容如果瞭解群論中迴圈群的概念的話非常好理解,因為集合K其實就是一個階為e的迴圈群⟨(ρq)e**(s−1)⟩,當然不瞭解群論也沒關係。後續的內容就類似開平方了,有
兩邊開e次根得到集合K中的一個數設為Ke−j
這裡其實就是本方法的重點,也是我們之前為何要構造該集合,在二次中我們開根得到的是±1,而這裡則不同我們直到e次方程便有e個根,那麼對於這裡的
來說,他們的e個根其實就是剛才我們構造的集合{Ki},他們都滿足Kie≡1,所以開根後的結果便在這個集合之中
後續的內容其實就很簡單了,其實就是根據它的值不斷地乘上Kj使得
即
這樣我們就完成了一次降冪,最後我們不斷開根相乘,直到我們得到
此時我們乘上r再提出e次方開根即
此時我們便得到了其中的一個根。
同樣我們還是這裡解釋一下可能出現的疑惑。
1.為什麼在二次中開根直接就是±1?
實際上這是特殊情況,二次中你依然可以構造
你會發現結果就是
2.為什麼開根的結果一定在集合K中?
一種樸素的思想是因為集合K就是所有開根的集合,所以它在裡面。
這裡實際上用群論的性質更加嚴謹,設結果為μ
所以
簡而言之這兩個生成元是可以互相生成的,所以他們構造的迴圈群相等。即K=⟨μ⟩。
回到題目,我們用了大量的篇幅最終得到了結論就是我們可以對模p意義下進行開任意次根了,那麼我們可以把題目轉換成
再透過AMM解出
注意之前我們說了,這只是其中的一個根,一共有e組解,所以我們還需要構造其他的解,其實也就是構造這個解的集合,對於mp來說,我們只需要讓其不斷乘上集合{ri}即可,其中滿足rie≡1(mod p),即可得到所有解(因為(mpri)e≡cp(mod p),所以mpri也是一個解)。
最後注意,如果我們的flag足夠小的話,則直接可以在mp或mq的集合中找到flag,但是本題明顯我們的flag是有填充的,所以我們需要再將集合中的所有解,兩兩做一次CRT,而其中就有一組組合可以得到正確的flag。
exp:
from Crypto.Util.number import *
from gmpy2 import *
import random
import math
n = 38041020633815871156456469733983765765506895617311762629687651104582466286930269704125415948922860928755218376007606985275046819516740493733602776653724917044661666016759231716059415706703608364873041098478331738686843910748962386378250780017056206432910543374411668835255040201640020726710967482627384460424737495938659004753604600674521079949545966815918391090355556787926276553281009472950401599151788863393804355849499551329
c = 2252456587771662978440183865248648532442503596913181525329434089345680311102588580009450289493044848004270703980243056178363045412903946651952904162045861994915982599488021388197891419171012611795147125799759947942753772847866647801312816514803861011346523945623870123406891646751226481676463538137263366023714001998348605629756519894600802504515051642140147685496526829541501501664072723281466792594858474882239889529245732945
p = 5220649501756432310453173296020153841505609640978826669340282938895377093244978215488158231209243571089268416199675077647719021740691293187913372884975853901554910056350739745148711689601574920977808625399309470283
q = 7286645200183879820325990521698389973072307061827784645416472106180161656047009812712987400850001340478084529480635891468153462119149259083604029658605921695587836792877281924620444742434168448594010024363257554563
e = 1009
def onemod(e, q):
p = random.randint(1, q-1)
while(powmod(p, (q-1)//e, q) == 1): # (r,s)=1
p = random.randint(1, q)
return p
def AMM_rth(o, r, q): # r|(q-1
assert((q-1) % r == 0)
p = onemod(r, q)
t = 0
s = q-1
while(s % r == 0):
s = s//r
t += 1
k = 1
while((s*k+1) % r != 0):
k += 1
alp = (s*k+1)//r
a = powmod(p, r**(t-1)*s, q)
b = powmod(o, r*a-1, q)
c = powmod(p, s, q)
h = 1
for i in range(1, t-1):
d = powmod(int(b), r**(t-1-i), q)
if d == 1:
j = 0
else:
j = (-math.log(d, a)) % r
b = (b*(c**(r*j))) % q
h = (h*c**j) % q
c = (c*r) % q
result = (powmod(o, alp, q)*h)
return result
def ALL_Solution(m, q, rt, cq, e):
mp = []
for pr in rt:
r = (pr*m) % q
# assert(pow(r, e, q) == cq)
mp.append(r)
return mp
def calc(mp, mq, e, p, q):
i = 1
j = 1
t1 = invert(q, p)
t2 = invert(p, q)
for mp1 in mp:
for mq1 in mq:
j += 1
if j % 100000 == 0:
print(j)
ans = (mp1*t1*q+mq1*t2*p) % (p*q)
if check(ans):
return
return
def check(m):
try:
a = long_to_bytes(m)
if b'NSSCTF' in a:
print(a)
return True
else:
return False
except:
return False
def ALL_ROOT2(r, q): # use function set() and .add() ensure that the generated elements are not repeated
li = set()
while(len(li) < r):
p = powmod(random.randint(1, q-1), (q-1)//r, q)
li.add(p)
return li
cp = c % p
cq = c % q
mp = AMM_rth(cp, e, p) # AMM演算法得到一個解
mq = AMM_rth(cq, e, q)
rt1 = ALL_ROOT2(e, p) # 得到所有的ri,即(ri*mp)^e%p = 1
rt2 = ALL_ROOT2(e, q)
amp = ALL_Solution(mp, p, rt1, cp, e) # 得到所有的mp
amq = ALL_Solution(mq, q, rt2, cq, e)
calc(amp, amq, e, p, q) # 倆倆CRT
# NSSCTF{ee5cb1a5-9d62-257a-9ef5-48b06ff0651a}
其實最終就算暫時不能理解AMM演算法的原理也沒關係,我們只要瞭解AMM的核心功能當作黑盒呼叫也是可以的,不過一定要把exp最後的執行流程搞懂,不然題目稍微改變便寫不出exp了。
[RSA3]P10(AMM演算法進階)
題目
from Crypto.Util.number import *
import os
from gmpy2 import *
def getMyPrime1(nbits):
while True:
n = 2*1009*7*getPrime(nbits//2)*getPrime(nbits//2)
if is_prime(n+1):
return n+1
def getMyPrime2(nbits):
while True:
n = 2*1009*getPrime(nbits//2)*getPrime(nbits//2)
if is_prime(n+1):
return n+1
p = getMyPrime1(700)
q = getMyPrime2(700)
n = p*q
e = 1009*7
flag = b'NSSCTF{******}' + os.urandom(100)
m = bytes_to_long(flag)
assert m.bit_length() < n.bit_length()
assert m.bit_length() > q.bit_length()
assert m.bit_length() > p.bit_length()
c = pow(m, e, n)
print(f'n = {n}')
print(f'c = {c}')
print(f'p = {p}')
print(f'q = {q}')
'''
n = 98950849420612859614279452190318782153029931966597217314273823358984928689736597943774367572478091193816498014404387458350141854427041188032441028722132300155987022405432547244436252627801235200799719531840755071562539171489733346246951714886747673950900290905148318965065773167290984966067642777528454814019184856012497536781760044965489668142694134954466581148235162435617572891367282110999553789319439912296241889469226304877
c = 22561646796929363815984273658718096881828574147472740106912668949512978818367595303883956088667384207835022579136977262135029404640598574466248596921339941958216824486529066880854722372158998556902335323841170236300423638675072077074005797219260622119718558697081430219981494670569821476853158740209737420919480047033900157150865588466910802691118334480300332681763467974691587834295938999022060676767513865584039532912503921584
p = 33918986475509072603988274492338254523919682179700323084167169617716245684540055969194500298976880885466534900490327133434356902533524212744941101469238500990334546197257933040365697281122571898438913033813040027859
q = 2917270228344219924472221188897798789902618263281810355113281879157575741497356945522168552316357276417700368971563177551494320723579146612010452353273237547587402941227901795977981691403950826343318848831462080703
'''
我的解答:
本題可以作為對AMM演算法的作業題,如果還不能獨立完成本題則說明對AMM的掌握仍有欠缺。
這裡我們會發現e和q竟然是不互素,但又不完全滿足e∣(q−1),此時我們不能直接套用上題程式碼,而是要分開處理,對於p來說,我們可以按照上題流程
- AMM演算法獲得一個根
- 獲得所有的ri
- 相乘得到所有的根mp
但對於q來說,我們需要將m7看成一個整體,此時1009∣(q−1),所以我們可以按照上面思路求得所有的mq7,然後又有7⊥q,所以可以按照RSA得方式直接解得mq,當然這個順序不是必須得,你也可以先解e=7的RSA解密步驟,再解e=1009的AMM求根步驟,都沒有關係。
最後我們再將mp和mq的集合倆倆做CRT,得到最終的m
exp:
from Crypto.Util.number import *
from gmpy2 import *
import random
import math
n = 98950849420612859614279452190318782153029931966597217314273823358984928689736597943774367572478091193816498014404387458350141854427041188032441028722132300155987022405432547244436252627801235200799719531840755071562539171489733346246951714886747673950900290905148318965065773167290984966067642777528454814019184856012497536781760044965489668142694134954466581148235162435617572891367282110999553789319439912296241889469226304877
c = 22561646796929363815984273658718096881828574147472740106912668949512978818367595303883956088667384207835022579136977262135029404640598574466248596921339941958216824486529066880854722372158998556902335323841170236300423638675072077074005797219260622119718558697081430219981494670569821476853158740209737420919480047033900157150865588466910802691118334480300332681763467974691587834295938999022060676767513865584039532912503921584
p = 33918986475509072603988274492338254523919682179700323084167169617716245684540055969194500298976880885466534900490327133434356902533524212744941101469238500990334546197257933040365697281122571898438913033813040027859
q = 2917270228344219924472221188897798789902618263281810355113281879157575741497356945522168552316357276417700368971563177551494320723579146612010452353273237547587402941227901795977981691403950826343318848831462080703
e = 1009*7
def onemod(e, q):
p = random.randint(1, q-1)
while(powmod(p, (q-1)//e, q) == 1): # (r,s)=1
p = random.randint(1, q)
return p
def AMM_rth(o, r, q): # r|(q-1
assert((q-1) % r == 0)
p = onemod(r, q)
t = 0
s = q-1
while(s % r == 0):
s = s//r
t += 1
k = 1
while((s*k+1) % r != 0):
k += 1
alp = (s*k+1)//r
a = powmod(p, r**(t-1)*s, q)
b = powmod(o, r*a-1, q)
c = powmod(p, s, q)
h = 1
for i in range(1, t-1):
d = powmod(int(b), r**(t-1-i), q)
if d == 1:
j = 0
else:
j = (-math.log(d, a)) % r
b = (b*(c**(r*j))) % q
h = (h*c**j) % q
c = (c*r) % q
result = (powmod(o, alp, q)*h)
return result
def ALL_Solution(m, q, rt, cq, e):
mp = []
for pr in rt:
r = (pr*m) % q
# assert(pow(r, e, q) == cq)
mp.append(r)
return mp
def calc(mp, mq, e, p, q):
i = 1
j = 1
t1 = invert(q, p)
t2 = invert(p, q)
for mp1 in mp:
for mq1 in mq:
j += 1
if j % 100000 == 0:
print(j)
ans = (mp1*t1*q+mq1*t2*p) % (p*q)
if check(ans):
return
return
def check(m):
try:
a = long_to_bytes(m)
if b'NSSCTF' in a:
print(a)
return True
else:
return False
except:
return False
def ALL_ROOT2(r, q): # use function set() and .add() ensure that the generated elements are not repeated
li = set()
while(len(li) < r):
p = powmod(random.randint(1, q-1), (q-1)//r, q)
li.add(p)
return li
cp = c % p
cq = c % q
mp = AMM_rth(cp, e, p)
mq = AMM_rth(cq, 1009, q)
rt1 = ALL_ROOT2(e, p)
rt2 = ALL_ROOT2(1009, q)
amp = ALL_Solution(mp, p, rt1, cp, e)
amq = ALL_Solution(mq, q, rt2, cq, 1009)
d = invert(7, q-1)
mqs = []
for mq in amq:
mqs.append(pow(mq, d, q))
amq = mqs
calc(amp, amq, e, p, q)
# NSSCTF{827152d9-4ac6-4dd2-8f33-c6a28a1433d2}
[RSA3]P11(證書格式)
題目
enc:
Qq/q(o鴽峹^,欗夲b?銁R%f訟?s?碢w溌(浠\炓ネ$╀氳?&箄M瑈i:?@]T鑿烯邽iAta忀,喌嘦?`糿50?,'卞w|Zn玪H騲吀D犵
key.pem:
-----BEGIN RSA PRIVATE KEY-----
MIICWwIBAAKBgHBkeHn6Q67opdN4V1S3mI0SsUuYzzm+IbXZDz4yZOMWz5nDBYuJ
SA8rRqDtqb7mtNdTGZZx7xe6tOwleqvkXn629mgUZZegyaBdBSPnUR6IUqduqpLo
HRavrHr1IkI6oAmDEQzi1lCZ03x0jMKuoOKp9LBhP9ijCoy9iRh9tH+FAgMBAAEC
gYAvLn5E9oKjUpcKh2Jh9hDcaBR1n9iebOrJ5C059v3TNyg/bFdPlHnjpE8qD5tK
wJ76JbCAL6QnWgHJgJJWxq/EAy/9SG+eApaBo94Sb2B2A1WceDf8F1idkXUOvU/3
kd/wbw/gLZLya8WCFF4SUZx09TToMqSWDEJI4kN17pU5AQJBAJv9ShfSbaMNK31O
kg9LSI7wFLq7iiFRl5kXvSKLsYB3HAKHNlV6/ZL1TV2jg37yf9Mi2f0Gx5AVXbwi
/1ef9R0CQQC4c5EkR8VAw8lqePLwCkCJisXKAEOqPZFOiSCCIVnY+5J4kgiZiS33
rskWwsYAIBHVKiXSy+5NdvWk51MeYi+JAkBiZNvmuOJVVkpXaUcyhH9JQmEhBIj1
yVzBwbqY3trhOMCfS6DXPJRUrYzWgvzAB8Dfcn1kYHFjDkcpFD5SjGB1AkBtyKNH
w8v820tjqu91vbRh6Q4GSBf+GL0G0IlfyrfudPXd+5VQxRxuAkM/39f3tR7IEFkI
2UZSJw7YArMvL2N5AkEAmVGTH6DU3ygzjCtdl4/2dhonSHcEovCFWGZuCqBjYEw6
IGYAlpOiv/BICMXrOBsdd1+4j6n1edxHSGH9q4Aoug==
-----END RSA PRIVATE KEY-----
我的解答:
本題我們將來了解關於RSA的證書格式,之前我們所有的題目都是給出具體的數字,然後在這些數字上面做操作,但是在現實世界中不可能直接傳輸數字來進行操作的,因為這太不穩定了,例如某處出現錯誤、出現截斷、順序顛倒等等都會導致整個傳輸過程出現不可查的錯誤。所以會有統一的格式對這些數字進行封裝,而這種封裝之後的內容我們就稱之為證書。
我們常見的證書有兩種格式,一種叫做PEM
另一種為DER
,實際上不管使用的是哪種格式,證書的內容最後都是我們那些數字,而且我們可以很輕鬆的在不同的證書之間進行轉換。
本題給出了一個.pem
的證書,同時給出了enc
檔案,但是沒有給出具體的加密邏輯,此時我們只能先將證書的內容提取出來再做下一步判斷。對於這些各類證書,我們都可以使用openssl
工具進行提取,
直接輸入openssl help
你會發現列印出來了命令列表
Standard commands
asn1parse ca ciphers cms
crl crl2pkcs7 dgst dhparam
dsa dsaparam ec ecparam
enc engine errstr gendsa
genpkey genrsa help list
nseq ocsp passwd pkcs12
pkcs7 pkcs8 pkey pkeyparam
pkeyutl prime rand rehash
req rsa rsautl s_client
s_server s_time sess_id smime
speed spkac srp storeutl
cast-cbc cast5-cbc cast5-cfb cast5-ecb
cast5-ofb des des-cbc des-cfb
des-ecb des-ede des-ede-cbc des-ede-cfb
des-ede-ofb des-ede3 des-ede3-cbc des-ede3-cfb
des-ede3-ofb des-ofb des3 desx
idea idea-cbc idea-cfb idea-ecb
idea-ofb rc2 rc2-40-cbc rc2-64-cbc
rc2-cbc rc2-cfb rc2-ecb rc2-ofb
rc4 rc4-40 seed seed-cbc
seed-cfb seed-ecb seed-ofb sm4-cbc
sm4-cfb sm4-ctr sm4-ecb sm4-ofb
這裡的每一項都代表特定的演算法或者證書格式,而我們這裡涉及的是rsa
,所以我們使用openssl rsa -help
進一步檢視幫助文件
Usage: rsa [options]
Valid options are:
-help Display this summary 檢視幫助
-inform format Input format, one of DER PEM 指定輸入格式
-outform format Output format, one of DER PEM PVK 指定輸出格式
-in val Input file 輸入檔案
-out outfile Output file 輸出檔案
-pubin Expect a public key in input file 期望輸入時一個公鑰
-pubout Output a public key 輸出公鑰檔案
-passout val Output file pass phrase source 給輸出檔案設定密碼
-passin val Input file pass phrase source 輸入檔案的密碼
-RSAPublicKey_in Input is an RSAPublicKey 指定輸入是一個RSA公鑰
-RSAPublicKey_out Output is an RSAPublicKey 指定輸出是一個RSA公鑰
-noout Don't print key out 不要列印輸入的金鑰內容
-text Print the key in text 用文字格式列印金鑰內容
-modulus Print the RSA key modulus 列印RSA金鑰的模數
-check Verify key consistency 檢測金鑰是否一致
-* Any supported cipher 其他引數
-pvk-strong Enable 'Strong' PVK encoding level (default) 啟用“強”PVK編碼級別(預設)
-pvk-weak Enable 'Weak' PVK encoding level 啟用“弱”PVK編碼級別
-pvk-none Don't enforce PVK encoding 不強制執行PVK編碼
-engine val Use engine, possibly a hardware device 指定解析引擎
這裡列出了和rsa
證書有關的項,後面中文內容是我額外新增的釋義,那麼我們要檢視金鑰內容的話直接
openssl rsa -in key.pem -inform PEM
會發現他將金鑰內容又列印了一遍,這是因為它預設就是隻做解析不會有其他操作,我們需要具體指定我們想要的操作,例如-text
以文字內容輸出引數,
openssl rsa -in key.pem -inform PEM -text
此時我們得到輸出
RSA Private-Key: (1023 bit, 2 primes)
modulus:
70:64:78:79:fa:43:ae:e8:a5:d3:78:57:54:b7:98:
8d:12:b1:4b:98:cf:39:be:21:b5:d9:0f:3e:32:64:
e3:16:cf:99:c3:05:8b:89:48:0f:2b:46:a0:ed:a9:
be:e6:b4:d7:53:19:96:71:ef:17:ba:b4:ec:25:7a:
ab:e4:5e:7e:b6:f6:68:14:65:97:a0:c9:a0:5d:05:
23:e7:51:1e:88:52:a7:6e:aa:92:e8:1d:16:af:ac:
7a:f5:22:42:3a:a0:09:83:11:0c:e2:d6:50:99:d3:
7c:74:8c:c2:ae:a0:e2:a9:f4:b0:61:3f:d8:a3:0a:
8c:bd:89:18:7d:b4:7f:85
publicExponent: 65537 (0x10001)
privateExponent:
2f:2e:7e:44:f6:82:a3:52:97:0a:87:62:61:f6:10:
dc:68:14:75:9f:d8:9e:6c:ea:c9:e4:2d:39:f6:fd:
d3:37:28:3f:6c:57:4f:94:79:e3:a4:4f:2a:0f:9b:
4a:c0:9e:fa:25:b0:80:2f:a4:27:5a:01:c9:80:92:
56:c6:af:c4:03:2f:fd:48:6f:9e:02:96:81:a3:de:
12:6f:60:76:03:55:9c:78:37:fc:17:58:9d:91:75:
0e:bd:4f:f7:91:df:f0:6f:0f:e0:2d:92:f2:6b:c5:
82:14:5e:12:51:9c:74:f5:34:e8:32:a4:96:0c:42:
48:e2:43:75:ee:95:39:01
prime1:
00:9b:fd:4a:17:d2:6d:a3:0d:2b:7d:4e:92:0f:4b:
48:8e:f0:14:ba:bb:8a:21:51:97:99:17:bd:22:8b:
b1:80:77:1c:02:87:36:55:7a:fd:92:f5:4d:5d:a3:
83:7e:f2:7f:d3:22:d9:fd:06:c7:90:15:5d:bc:22:
ff:57:9f:f5:1d
prime2:
00:b8:73:91:24:47:c5:40:c3:c9:6a:78:f2:f0:0a:
40:89:8a:c5:ca:00:43:aa:3d:91:4e:89:20:82:21:
59:d8:fb:92:78:92:08:99:89:2d:f7:ae:c9:16:c2:
c6:00:20:11:d5:2a:25:d2:cb:ee:4d:76:f5:a4:e7:
53:1e:62:2f:89
exponent1:
62:64:db:e6:b8:e2:55:56:4a:57:69:47:32:84:7f:
49:42:61:21:04:88:f5:c9:5c:c1:c1:ba:98:de:da:
e1:38:c0:9f:4b:a0:d7:3c:94:54:ad:8c:d6:82:fc:
c0:07:c0:df:72:7d:64:60:71:63:0e:47:29:14:3e:
52:8c:60:75
exponent2:
6d:c8:a3:47:c3:cb:fc:db:4b:63:aa:ef:75:bd:b4:
61:e9:0e:06:48:17:fe:18:bd:06:d0:89:5f:ca:b7:
ee:74:f5:dd:fb:95:50:c5:1c:6e:02:43:3f:df:d7:
f7:b5:1e:c8:10:59:08:d9:46:52:27:0e:d8:02:b3:
2f:2f:63:79
coefficient:
00:99:51:93:1f:a0:d4:df:28:33:8c:2b:5d:97:8f:
f6:76:1a:27:48:77:04:a2:f0:85:58:66:6e:0a:a0:
63:60:4c:3a:20:66:00:96:93:a2:bf:f0:48:08:c5:
eb:38:1b:1d:77:5f:b8:8f:a9:f5:79:dc:47:48:61:
fd:ab:80:28:ba
我們可以看到,它解析出了這個一個RSA的私鑰檔案,裡面包含
modulus - 模數 - n
publicExponent - 加密指數 - e
privateExponent - 解密指數 - d
prime1 - 素因子 - p
prime2 - 素因子 - q
可以發現這裡面直接包含了我們涉及到的所有RSA引數,除了這些我們已經見過的引數之外,還包含一些其他引數,這些引數是用來進行快速解密的CRT引數,實際上他們分別是
exponent1 - dp
exponent2 - dq
coefficient - invert(p, q)
這是一個非常完整的私鑰,有時候提取出來的內容並不那麼完整,例如只涉及其中的部分引數,此時這需要我們利用得到的引數進一步考察引數之前的關係,再使用我們之前所學習過的各類攻擊手段對密文進行解密。
這裡的輸出實際上就是16進位制值,你只需要把所有的:
去掉並粘連為一行即可使用。
對於密文的話,我們直接從檔案讀取然後使用bytes_to_long
轉為數字處理即可。
from Crypto.Util.number import *
from gmpy2 import *
n = 0x70647879fa43aee8a5d3785754b7988d12b14b98cf39be21b5d90f3e3264e316cf99c3058b89480f2b46a0eda9bee6b4d753199671ef17bab4ec257aabe45e7eb6f668146597a0c9a05d0523e7511e8852a76eaa92e81d16afac7af522423aa00983110ce2d65099d37c748cc2aea0e2a9f4b0613fd8a30a8cbd89187db47f85
c = open('enc', 'rb').read()
c = bytes_to_long(c)
d = 0x2f2e7e44f682a352970a876261f610dc6814759fd89e6ceac9e42d39f6fdd337283f6c574f9479e3a44f2a0f9b4ac09efa25b0802fa4275a01c9809256c6afc4032ffd486f9e029681a3de126f607603559c7837fc17589d91750ebd4ff791dff06f0fe02d92f26bc582145e12519c74f534e832a4960c4248e24375ee953901
print(long_to_bytes(pow(c, d, n)))
# NSSCTF{4f85c39b-6d7a-4e29-a215-7379e30d2939}
以上是手動提取欄位的方案,實際上在Crypto
包中已經包含了關於各類證書的解析,我們也可以使用exp
from Crypto.Util.number import *
from gmpy2 import *
from Crypto.PublicKey import RSA
rsa = RSA.importKey(open('key.pem', 'rb').read())
print(rsa.n, rsa.d, rsa.p) # 提取具體值
c = open('enc', 'rb').read()
c = bytes_to_long(c)
m = rsa._decrypt(c)
print(long_to_bytes(m))
# NSSCTF{4f85c39b-6d7a-4e29-a215-7379e30d2939}
關於openssl
我們還可以使用它進行轉換各類金鑰格式,例如我們將金鑰轉換為DER
格式
openssl rsa -in key.pem -inform PEM -outform DER -out key.der
又或者從私鑰生成公鑰檔案
openssl rsa -in key.pem -inform PEM -pubout
[RSA3]P12(證書修復)
題目
enc = 2329206064672111950904450292941421573350591294207157652026787098178545948258554492347649016030892000747909819064473414536692222493030122267884839986067073054508582403564557167583565364976046083954888777809177108315052118912603290095925912298584322873410379937455462434313487981715516761071523410121549134193124709612876311518391130974466069686830456036397449773159386026998482557500868323733155606973727191287617806211911722356975478414165867941665666556476756617951672736466672410799762479373101996896644454778482896784598378016390592459460753042458284030795009957030383305268628413551730442224404807955926606496353
我們還得到了半截金鑰,請你解密上述密文
Oh17ELp/n2Urnqg/gaFbKWHgDNYzdPNGqNePgdrRtpfzq+js7QAiYNifLRK8k5XC
MwErb3RKOA0dCu14yftSoo2V+FjGML07Fk6Fe0BvVBMRQm1k1fC24NECgYEAvv/5
kH91u3rVYRMbXHauE3vWeuDjK5D5K5l7BEJ3yrPf64TyVROBJ+Gk5TdRpo23Q6AO
2KzFjzMQf+NdtrSBO8BI20i9UwvLNfukNNu3DifXiu3i3g1HRd81okVBe4x0oxp7
Vad9tF69btHcSz3KpDWnnb9yQNlndTcuZLWLCAMCgYB3pVRhTBEbUd6pA6joIivn
lbRZSIBfxvXqZ+YK1JPxF7MDPqLuhNh8CimofqOJCKk+MT4I/oPckbqGlbqWnUDy
Q63f9iDuQL2oVi/1OJZh79i51ZdrrPK8mhz8VNdwTHCYRBseclN2D8fbzvekFwgu
dJLo4ICPNNgwx3LoAHFPQQKBgBwQBf3qDEVAdetuYD3Eniz0q/2f3yC+iy2RvlZQ
4cLhjMvQ274OQJK4f37CEvgSqFOCR8wkDl7M1ObFZDZ87OP3i3zUgiSaff/veh/e
DFZDGlMqQoP3lXo5omq2HDnn2BdCw85A7qI6rUCECwbvDD/2NitiPooypxW8xs87
MTM7AoGBAISI776nLpq6x/cQhbhukHG+zhcPjJKjh669zIn4kVwzc5YJpzys1VWb
Olb9WQgu0xG6tJ9C6gumvl4lNFPbD8i1tqq0WBY7igExIf1cVU3MUdgcV+YPWdnX
+PTUX6skNl2gOe2PtUAc+v8Miq4hka6L10I1HREDT/Dwwy+wWGgQ
-----END RSA PRIVATE KEY-----
我的解答:
在本題中我們得到的是一個破損的證書檔案,此時我們無法直接使用openssl
提取出想要的資訊,但是資訊就在裡面,所以我們要了解PEM
的證書編碼格式。
首先我們要知道PEM檔案是按照ASN.1標準進行DER編碼後再進行Base64編碼得到的內容,所以PEM和DER本質是一家,只是在DER的基礎上新增了Base64編碼。
這裡我們先以P11的證書為例來說明其格式,首先我們將證書解Base64後再轉換為16進位制輸出
from base64 import b64decode
import binascii
s = '''MIICWwIBAAKBgHBkeHn6Q67opdN4V1S3mI0SsUuYzzm+IbXZDz4yZOMWz5nDBYuJ
SA8rRqDtqb7mtNdTGZZx7xe6tOwleqvkXn629mgUZZegyaBdBSPnUR6IUqduqpLo
HRavrHr1IkI6oAmDEQzi1lCZ03x0jMKuoOKp9LBhP9ijCoy9iRh9tH+FAgMBAAEC
gYAvLn5E9oKjUpcKh2Jh9hDcaBR1n9iebOrJ5C059v3TNyg/bFdPlHnjpE8qD5tK
wJ76JbCAL6QnWgHJgJJWxq/EAy/9SG+eApaBo94Sb2B2A1WceDf8F1idkXUOvU/3
kd/wbw/gLZLya8WCFF4SUZx09TToMqSWDEJI4kN17pU5AQJBAJv9ShfSbaMNK31O
kg9LSI7wFLq7iiFRl5kXvSKLsYB3HAKHNlV6/ZL1TV2jg37yf9Mi2f0Gx5AVXbwi
/1ef9R0CQQC4c5EkR8VAw8lqePLwCkCJisXKAEOqPZFOiSCCIVnY+5J4kgiZiS33
rskWwsYAIBHVKiXSy+5NdvWk51MeYi+JAkBiZNvmuOJVVkpXaUcyhH9JQmEhBIj1
yVzBwbqY3trhOMCfS6DXPJRUrYzWgvzAB8Dfcn1kYHFjDkcpFD5SjGB1AkBtyKNH
w8v820tjqu91vbRh6Q4GSBf+GL0G0IlfyrfudPXd+5VQxRxuAkM/39f3tR7IEFkI
2UZSJw7YArMvL2N5AkEAmVGTH6DU3ygzjCtdl4/2dhonSHcEovCFWGZuCqBjYEw6
IGYAlpOiv/BICMXrOBsdd1+4j6n1edxHSGH9q4Aoug=='''
s = b64decode(s)
print(binascii.hexlify(s))
得到
3082025b02010002818070647879fa43aee8a5d3785754b7988d12b14b98cf39be21b5d90f3e3264e316cf99c3058b89480f2b46a0eda9bee6b4d753199671ef17bab4ec257aabe45e7eb6f668146597a0c9a05d0523e7511e8852a76eaa92e81d16afac7af522423aa00983110ce2d65099d37c748cc2aea0e2a9f4b0613fd8a30a8cbd89187db47f8502030100010281802f2e7e44f682a352970a876261f610dc6814759fd89e6ceac9e42d39f6fdd337283f6c574f9479e3a44f2a0f9b4ac09efa25b0802fa4275a01c9809256c6afc4032ffd486f9e029681a3de126f607603559c7837fc17589d91750ebd4ff791dff06f0fe02d92f26bc582145e12519c74f534e832a4960c4248e24375ee9539010241009bfd4a17d26da30d2b7d4e920f4b488ef014babb8a2151979917bd228bb180771c028736557afd92f54d5da3837ef27fd322d9fd06c790155dbc22ff579ff51d024100b873912447c540c3c96a78f2f00a40898ac5ca0043aa3d914e8920822159d8fb9278920899892df7aec916c2c6002011d52a25d2cbee4d76f5a4e7531e622f8902406264dbe6b8e255564a57694732847f494261210488f5c95cc1c1ba98dedae138c09f4ba0d73c9454ad8cd682fcc007c0df727d646071630e4729143e528c607502406dc8a347c3cbfcdb4b63aaef75bdb461e90e064817fe18bd06d0895fcab7ee74f5ddfb9550c51c6e02433fdfd7f7b51ec8105908d94652270ed802b32f2f63790241009951931fa0d4df28338c2b5d978ff6761a27487704a2f08558666e0aa063604c3a2066009693a2bff04808c5eb381b1d775fb88fa9f579dc474861fdab8028ba
這便是原始的ASN.1
格式內容,首先我們要知道ASN.1
是一種用來描述資料結構的抽象語法,它並不是只用來儲存金鑰,在ASN.1
中你可以自定義你的資料型別和數值約束等條件,你可以把它理解為一種序列化資料的格式。其中資料格式如下
以此往復,所以除了最開始的識別符號外,後續的內容都是由
型別
+ 長度
+ 值
構成的,而這些值根據他們出現的位置不同有著不同的含義,例如最開始出現的值0
在PEM中代表版本號資訊。
隨後的資料值1代表模數。完整順序如下
版本
模數 - n
加密指數 - e
解密指數 - d
素因子1 - p
素因子2 - q
指數1 - dp
指數2 - dq
係數 - invert(q, p)
其他額外資訊
在瞭解了該格式後我們就能對上面的16進位制資料直接分段了
標識頭 30
總長度 82 025b
版本資訊 0201 00
n 028180 70647879fa43aee8a5d3785754b7988d12b14b98cf39be21b5d90f3e3264e316cf99c3058b89480f2b46a0eda9bee6b4d753199671ef17bab4ec257aabe45e7eb6f668146597a0c9a05d0523e7511e8852a76eaa92e81d16afac7af522423aa00983110ce2d65099d37c748cc2aea0e2a9f4b0613fd8a30a8cbd89187db47f85
e 0203 010001
d 028180 2f2e7e44f682a352970a876261f610dc6814759fd89e6ceac9e42d39f6fdd337283f6c574f9479e3a44f2a0f9b4ac09efa25b0802fa4275a01c9809256c6afc4032ffd486f9e029681a3de126f607603559c7837fc17589d91750ebd4ff791dff06f0fe02d92f26bc582145e12519c74f534e832a4960c4248e24375ee953901
p 0241 009bfd4a17d26da30d2b7d4e920f4b488ef014babb8a2151979917bd228bb180771c028736557afd92f54d5da3837ef27fd322d9fd06c790155dbc22ff579ff51d
q 0241 00b873912447c540c3c96a78f2f00a40898ac5ca0043aa3d914e8920822159d8fb9278920899892df7aec916c2c6002011d52a25d2cbee4d76f5a4e7531e622f89
dp 0240 6264dbe6b8e255564a57694732847f494261210488f5c95cc1c1ba98dedae138c09f4ba0d73c9454ad8cd682fcc007c0df727d646071630e4729143e528c6075
dq 0240 6dc8a347c3cbfcdb4b63aaef75bdb461e90e064817fe18bd06d0895fcab7ee74f5ddfb9550c51c6e02433fdfd7f7b51ec8105908d94652270ed802b32f2f6379
inv(q,p) 0241 009951931fa0d4df28338c2b5d978ff6761a27487704a2f08558666e0aa063604c3a2066009693a2bff04808c5eb381b1d775fb88fa9f579dc474861fdab8028ba
現在回到本題我們也先進行base64解碼得到,因為這裡是金鑰的後半截,所以我們不能從前往後直接解析,需要先找到一個定位錨點,我們可以按照02
先給資料初步分段
3a1d7b10ba7f9f652b9ea83f81a15b2961e00cd63374f346a8d78f81dad1b697f3abe8eced0
02260d89f2d12bc9395c233012b6f744a380d1d0aed78c9fb52a28d95f858c630bd3b164e857b406f541311426d64d5f0b6e0d1
02818100befff9907f75bb7ad561131b5c76ae137bd67ae0e32b90f92b997b044277cab3dfeb84f255138127e1a4e53751a68db743a00ed8acc58f33107fe35db6b4813bc048db48bd530bcb35fba434dbb70e27d78aede2de0d4745df35a245417b8c74a31a7b55a77db45ebd6ed1dc4b3dcaa435a79dbf7240d96775372e64b58b0803
02818077a554614c111b51dea903a8e8222be795b45948805fc6f5ea67e60ad493f117b3033ea2ee84d87c0a29a87ea38908a93e313e08fe83dc91ba8695ba969d40f243addff620ee40bda8562ff5389661efd8b9d5976bacf2bc9a1cfc54d7704c7098441b1e7253760fc7dbcef7a417082e7492e8e0808f34d830c772e800714f41
0281801c1005fdea0c454075eb6e603dc49e2cf4abfd9fdf20be8b2d91be5650e1c2e18ccbd0dbbe0e4092b87f7ec212f812a8538247cc240e5eccd4e6c564367cece3f78b7cd482249a7dffef7a1fde0c56431a532a4283f7957a39a26ab61c39e7d81742c3ce40eea23aad40840b06ef0c3ff6362b623e8a32a715bcc6cf3b31333b
028181008488efbea72e9abac7f71085b86e9071bece170f8c92a387aebdcc89f8915c33739609a73cacd5559b3a56fd59082ed311bab49f42ea0ba6be5e253453db0fc8b5b6aab458163b8a013121fd5c554dcc51d81c57e60f59d9d7f8f4d45fab24365da039ed8fb5401cfaff0c8aae2191ae8bd742351d11034ff0f0c32fb0586810
不一定資料中出現了02
就代表是資料開始的地方,因為也有可能資料中也包含02,我們要一一檢驗02
後面的長度標識定義的長度時候符合後續資料的長度,我們會發現第一塊後面的長度標識以及長度都不符合正常的定義,所以其實第一塊這裡的02是上一塊資料中的內容而非新資料的開始標識。最終我們可以得到
3a1d7b10ba7f9f652b9ea83f81a15b2961e00cd63374f346a8d78f81dad1b697f3abe8eced002260d89f2d12bc9395c233012b6f744a380d1d0aed78c9fb52a28d95f858c630bd3b164e857b406f541311426d64d5f0b6e0d1
q 028181 00befff9907f75bb7ad561131b5c76ae137bd67ae0e32b90f92b997b044277cab3dfeb84f255138127e1a4e53751a68db743a00ed8acc58f33107fe35db6b4813bc048db48bd530bcb35fba434dbb70e27d78aede2de0d4745df35a245417b8c74a31a7b55a77db45ebd6ed1dc4b3dcaa435a79dbf7240d96775372e64b58b0803
dp 028180 77a554614c111b51dea903a8e8222be795b45948805fc6f5ea67e60ad493f117b3033ea2ee84d87c0a29a87ea38908a93e313e08fe83dc91ba8695ba969d40f243addff620ee40bda8562ff5389661efd8b9d5976bacf2bc9a1cfc54d7704c7098441b1e7253760fc7dbcef7a417082e7492e8e0808f34d830c772e800714f41
dq 028180 1c1005fdea0c454075eb6e603dc49e2cf4abfd9fdf20be8b2d91be5650e1c2e18ccbd0dbbe0e4092b87f7ec212f812a8538247cc240e5eccd4e6c564367cece3f78b7cd482249a7dffef7a1fde0c56431a532a4283f7957a39a26ab61c39e7d81742c3ce40eea23aad40840b06ef0c3ff6362b623e8a32a715bcc6cf3b31333b
inv(q,p) 028181 008488efbea72e9abac7f71085b86e9071bece170f8c92a387aebdcc89f8915c33739609a73cacd5559b3a56fd59082ed311bab49f42ea0ba6be5e253453db0fc8b5b6aab458163b8a013121fd5c554dcc51d81c57e60f59d9d7f8f4d45fab24365da039ed8fb5401cfaff0c8aae2191ae8bd742351d11034ff0f0c32fb0586810
所以我們發現有用的資料為q,dp,dq,inv(q,p)
,顯然此時我們連n
都沒有,但是我們有dq
,我們知道它滿足
如果我們的m<q,則此時得到的解mq就等於m。最終exp如下
from Crypto.Util.number import *
q = 0x00befff9907f75bb7ad561131b5c76ae137bd67ae0e32b90f92b997b044277cab3dfeb84f255138127e1a4e53751a68db743a00ed8acc58f33107fe35db6b4813bc048db48bd530bcb35fba434dbb70e27d78aede2de0d4745df35a245417b8c74a31a7b55a77db45ebd6ed1dc4b3dcaa435a79dbf7240d96775372e64b58b0803
dq = 0x1c1005fdea0c454075eb6e603dc49e2cf4abfd9fdf20be8b2d91be5650e1c2e18ccbd0dbbe0e4092b87f7ec212f812a8538247cc240e5eccd4e6c564367cece3f78b7cd482249a7dffef7a1fde0c56431a532a4283f7957a39a26ab61c39e7d81742c3ce40eea23aad40840b06ef0c3ff6362b623e8a32a715bcc6cf3b31333b
c = 2329206064672111950904450292941421573350591294207157652026787098178545948258554492347649016030892000747909819064473414536692222493030122267884839986067073054508582403564557167583565364976046083954888777809177108315052118912603290095925912298584322873410379937455462434313487981715516761071523410121549134193124709612876311518391130974466069686830456036397449773159386026998482557500868323733155606973727191287617806211911722356975478414165867941665666556476756617951672736466672410799762479373101996896644454778482896784598378016390592459460753042458284030795009957030383305268628413551730442224404807955926606496353
m = pow(c, dq, q)
print(long_to_bytes(m))
# NSSCTF{301815bd-67ca-4866-9934-61144503d6b5}
所以當得到破損的證書後,我們也能夠透過證書格式得到其中的有效資訊,再加上其他攻擊方法便可以對訊息進行解密,當然這裡我們得到的是後半截所以可以直接知道每個位置資料代表什麼,如果是給出中間部分的證書,此時我們則需要透過逐一分析來進行檢驗,例如如果數是一個素數,則可能是素因子,如果相鄰兩個數差的非常大,則可能是e
和d
,最後我們總能找到有效資訊。