之前學習過的程式碼,又敲了一遍,新的收穫也還是有的,因為這次註釋寫的比較詳盡,所以再次記錄一下,具體的相關知識查閱之前寫的文章即可(見上面連結)。
# Author : Hellcat
# Time : 2017/12/6
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
def xavier_init(fan_in,fan_out, constant = 1):
'''
xavier 權重初始化方式
:param fan_in: 行數
:param fan_out: 列數
:param constant: 常數權重,調節初始化範圍的倍數
:return: 初始化後的權重tensor
'''
low = -constant * np.sqrt(6.0 / (fan_in + fan_out))
high = constant * np.sqrt(6.0 / (fan_in + fan_out))
return tf.random_uniform((fan_in, fan_out),
minval=low, maxval=high)
class AdditiveGaussianNoiseAutoencoder():
def __init__(self, n_input, n_hidden,
transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(),scale=0.1):
'''
初始化自編碼器
:param n_input: 輸入層結點數
:param n_hidden: 隱藏層節點數
:param transfer_function: 隱藏層啟用函式
:param optimizer: 優化器,是例項化的物件
:param scale: 高斯噪聲係數
'''
self.n_input = n_input
self.n_hidden = n_hidden
self.transfer = transfer_function
self.scale = tf.placeholder(tf.float32) # 實際網路中呼叫的
self.training_scale = scale # 訓練用噪聲係數
network_weights = self._initialize_weights()
self.weights = network_weights
self.x = tf.placeholder(tf.float32, [None, self.n_input])
self.hidden = \
self.transfer(
tf.add(
tf.matmul(
self.x + self.scale * tf.random_normal((n_input,)),
self.weights['w1']),
self.weights['b1']))
# 重建部分沒有使用啟用函式
self.reconstruction = \
tf.add(
tf.matmul(
self.hidden, self.weights['w2']),
self.weights['b2'])
self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction,self.x),2.0))
# 可以將類的例項過程作為實參傳入函式
self.optimizer = optimizer.minimize(self.cost)
init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(init)
def _initialize_weights(self):
'''
初始化全部變數
:return: 裝有變數的字典
'''
all_weights = dict()
all_weights['w1'] = tf.Variable(xavier_init(self.n_input, self.n_hidden))
all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
return all_weights
def partial_fit(self, X):
'''
進行單次訓練並返回loss
:param X: 訓練資料
:return: 本次損失函式值
'''
cost, opt = self.sess.run((self.cost, self.optimizer),
feed_dict={self.x:X, self.scale:self.training_scale})
return cost
def calc_totul_cost(self, X):
'''
計算損失函式,不觸發訓練
:param X: 訓練資料
:return: 損失函式
'''
return self.sess.run(self.cost, feed_dict={self.x:X, self.scale:self.training_scale})
def transform(self, X):
'''
返回隱藏層輸出結果,目的是獲取抽象後的特徵
:param X: 訓練資料
:return: 隱藏層輸出
'''
return self.sess.run(self.hidden, feed_dict={self.x:X, self.scale:self.training_scale})
def generate(self, hidden=None):
'''
通過隱藏層特徵重建
:param hidden: 隱藏層特徵
:return: 重建資料
'''
if hidden is None:
hidden = np.random.normal(size=[self.n_input])
return self.sess.run(self.reconstruction, feed_dict={self.hidden:hidden})
def reconstruct(self,X):
'''
從原始資料重建
:param X: 訓練資料
:return: 重建資料
'''
return self.sess.run(self.reconstruction,
feed_dict={self.x:X, self.scale:self.training_scale})
def getWeights(self):
'''
獲取引數值
:return: 隱藏層權重
'''
return self.sess.run(self.weights['w1'])
def getBaises(self):
'''
獲取引數值
:return: 隱藏層偏置
'''
return self.sess.run(self.weights['b1'])
def standard_scale(X_train, X_test):
'''
標準化資料
:param X_train: 訓練資料
:param X_test: 測試資料
:return: 標準化之後的訓練、測試資料
'''
preprocessor = prep.StandardScaler().fit(X_train)
X_train = preprocessor.transform(X_train)
X_test = preprocessor.transform(X_test)
return X_train, X_test
def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data) - batch_size)
return data[start_index:(start_index + batch_size)]
if __name__ == '__main__':
mnist = input_data.read_data_sets('../../../Mnist_data/',one_hot=True)
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples)
train_epochs = 20
batch_size = 20
display_step = 1
autoencoder = AdditiveGaussianNoiseAutoencoder(
n_input=784,
n_hidden=200,
transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
scale=0.01)
for epoch in range(train_epochs):
avg_cost = 0.
totu_batch = int(n_samples / batch_size)
for i in range(totu_batch):
batch_xs = get_random_block_from_data(X_train, batch_size)
# 單資料塊訓練並計算損失函式
cost = autoencoder.partial_fit(batch_xs)
avg_cost += cost / n_samples * batch_size
if epoch % display_step == 0:
print('epoch : %04d, cost = %.9f' % (epoch + 1,avg_cost))
# 計算測試集上的cost
print('Total coat:',str(autoencoder.calc_totul_cost(X_test)))
部分輸出如下:
……
epoch : 0020, cost = 1509.876800515
epoch : 0020, cost = 1510.107261985
epoch : 0020, cost = 1510.332509055
epoch : 0020, cost = 1510.551538707
Total coat: 768927.0
1.xavier初始化權重方法
2.函式實參可以是class(),即例項化的類