一行 Python 程式碼實現並行
(給Python開發者加星標,提升Python技能)
轉自:caspar
segmentfault.com/a/1190000000414339
Python 在程式並行化方面多少有些聲名狼藉。撇開技術上的問題,例如執行緒的實現和 GIL,我覺得錯誤的教學指導才是主要問題。常見的經典 Python 多執行緒、多程式教程多顯得偏"重"。而且往往隔靴搔癢,沒有深入探討日常工作中最有用的內容。
傳統的例子
簡單搜尋下"Python 多執行緒教程",不難發現幾乎所有的教程都給出涉及類和佇列的例子:
import os
import PIL
from multiprocessing import Pool
from PIL import Image
SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'
def get_image_paths(folder):
return (os.path.join(folder, f)
for f in os.listdir(folder)
if 'jpeg' in f)
def create_thumbnail(filename):
im = Image.open(filename)
im.thumbnail(SIZE, Image.ANTIALIAS)
base, fname = os.path.split(filename)
save_path = os.path.join(base, SAVE_DIRECTORY, fname)
im.save(save_path)
if __name__ == '__main__':
folder = os.path.abspath(
'11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
os.mkdir(os.path.join(folder, SAVE_DIRECTORY))
images = get_image_paths(folder)
pool = Pool()
pool.map(creat_thumbnail, images)
pool.close()
pool.join()
哈,看起來有些像 Java 不是嗎?
我並不是說使用生產者/消費者模型處理多執行緒/多程式任務是錯誤的(事實上,這一模型自有其用武之地)。只是,處理日常指令碼任務時我們可以使用更有效率的模型。
問題在於…
首先,你需要一個樣板類;
其次,你需要一個佇列來傳遞物件;
而且,你還需要在通道兩端都構建相應的方法來協助其工作(如果需想要進行雙向通訊或是儲存結果還需要再引入一個佇列)。
worker 越多,問題越多
按照這一思路,你現在需要一個 worker 執行緒的執行緒池。下面是一篇 IBM 經典教程中的例子——在進行網頁檢索時通過多執行緒進行加速。
#Example2.py
'''
A more realistic thread pool example
'''
import time
import threading
import Queue
import urllib2
class Consumer(threading.Thread):
def __init__(self, queue):
threading.Thread.__init__(self)
self._queue = queue
def run(self):
while True:
content = self._queue.get()
if isinstance(content, str) and content == 'quit':
break
response = urllib2.urlopen(content)
print 'Bye byes!'
def Producer():
urls = [
'http://www.python.org', 'http://www.yahoo.com'
'http://www.scala.org', 'http://www.google.com'
# etc..
]
queue = Queue.Queue()
worker_threads = build_worker_pool(queue, 4)
start_time = time.time()
# Add the urls to process
for url in urls:
queue.put(url)
# Add the poison pillv
for worker in worker_threads:
queue.put('quit')
for worker in worker_threads:
worker.join()
print 'Done! Time taken: {}'.format(time.time() - start_time)
def build_worker_pool(queue, size):
workers = []
for _ in range(size):
worker = Consumer(queue)
worker.start()
workers.append(worker)
return workers
if __name__ == '__main__':
Producer()
這段程式碼能正確的執行,但仔細看看我們需要做些什麼:構造不同的方法、追蹤一系列的執行緒,還有為了解決惱人的死鎖問題,我們需要進行一系列的 join 操作。這還只是開始……
至此我們回顧了經典的多執行緒教程,多少有些空洞不是嗎?樣板化而且易出錯,這樣事倍功半的風格顯然不那麼適合日常使用,好在我們還有更好的方法。
何不試試 map
map 這一小巧精緻的函式是簡捷實現 Python 程式並行化的關鍵。map 源於 Lisp 這類函數語言程式設計語言。它可以通過一個序列實現兩個函式之間的對映。
urls = ['http://www.yahoo.com', 'http://www.reddit.com']
results = map(urllib2.urlopen, urls)
上面的這兩行程式碼將 urls 這一序列中的每個元素作為引數傳遞到 urlopen 方法中,並將所有結果儲存到 results 這一列表中。其結果大致相當於:
results = []
for url in urls:
results.append(urllib2.urlopen(url))
map 函式一手包辦了序列操作、引數傳遞和結果儲存等一系列的操作。
為什麼這很重要呢?這是因為藉助正確的庫,map 可以輕鬆實現並行化操作。
在 Python 中有個兩個庫包含了 map 函式: multiprocessing 和它鮮為人知的子庫 multiprocessing.dummy.
這裡多扯兩句: multiprocessing.dummy? mltiprocessing 庫的執行緒版克隆?這是蝦米?即便在 multiprocessing 庫的官方文件裡關於這一子庫也只有一句相關描述。而這句描述譯成人話基本就是說:"嘛,有這麼個東西,你知道就成."相信我,這個庫被嚴重低估了!
dummy 是 multiprocessing 模組的完整克隆,唯一的不同在於 multiprocessing 作用於程式,而 dummy 模組作用於執行緒(因此也包括了 Python 所有常見的多執行緒限制)。
所以替換使用這兩個庫異常容易。你可以針對 IO 密集型任務和 CPU 密集型任務來選擇不同的庫。
動手嘗試
使用下面的兩行程式碼來引用包含並行化 map 函式的庫:
from multiprocessing import Pool
from multiprocessing.dummy import Pool as ThreadPool
例項化 Pool 物件:
pool = ThreadPool()
這條簡單的語句替代了 example2.py 中 buildworkerpool 函式 7 行程式碼的工作。它生成了一系列的 worker 執行緒並完成初始化工作、將它們儲存在變數中以方便訪問。
Pool 物件有一些引數,這裡我所需要關注的只是它的第一個引數:processes. 這一引數用於設定執行緒池中的執行緒數。其預設值為當前機器 CPU 的核數。
一般來說,執行 CPU 密集型任務時,呼叫越多的核速度就越快。但是當處理網路密集型任務時,事情有有些難以預計了,通過實驗來確定執行緒池的大小才是明智的。
pool = ThreadPool(4) # Sets the pool size to 4
執行緒數過多時,切換執行緒所消耗的時間甚至會超過實際工作時間。對於不同的工作,通過嘗試來找到執行緒池大小的最優值是個不錯的主意。
建立好 Pool 物件後,並行化的程式便呼之欲出了。我們來看看改寫後的 example2.py
import urllib2
from multiprocessing.dummy import Pool as ThreadPool
urls = [
'http://www.python.org',
'http://www.python.org/about/',
'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
'http://www.python.org/doc/',
'http://www.python.org/download/',
'http://www.python.org/getit/',
'http://www.python.org/community/',
'https://wiki.python.org/moin/',
'http://planet.python.org/',
'https://wiki.python.org/moin/LocalUserGroups',
'http://www.python.org/psf/',
'http://docs.python.org/devguide/',
'http://www.python.org/community/awards/'
# etc..
]
# Make the Pool of workers
pool = ThreadPool(4)
# Open the urls in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)
#close the pool and wait for the work to finish
pool.close()
pool.join()
實際起作用的程式碼只有 4 行,其中只有一行是關鍵的。map 函式輕而易舉的取代了前文中超過 40 行的例子。為了更有趣一些,我統計了不同方法、不同執行緒池大小的耗時情況。
# results = []
# for url in urls:
# result = urllib2.urlopen(url)
# results.append(result)
# # ------- VERSUS ------- #
# # ------- 4 Pool ------- #
# pool = ThreadPool(4)
# results = pool.map(urllib2.urlopen, urls)
# # ------- 8 Pool ------- #
# pool = ThreadPool(8)
# results = pool.map(urllib2.urlopen, urls)
# # ------- 13 Pool ------- #
# pool = ThreadPool(13)
# results = pool.map(urllib2.urlopen, urls)
結果:
# Single thread: 14.4 Seconds
# 4 Pool: 3.1 Seconds
# 8 Pool: 1.4 Seconds
# 13 Pool: 1.3 Seconds
很棒的結果不是嗎?這一結果也說明了為什麼要通過實驗來確定執行緒池的大小。在我的機器上當執行緒池大小大於 9 帶來的收益就十分有限了。
另一個真實的例子
生成上千張圖片的縮圖
這是一個 CPU 密集型的任務,並且十分適合進行並行化。
基礎單程式版本
import os
import PIL
from multiprocessing import Pool
from PIL import Image
SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'
def get_image_paths(folder):
return (os.path.join(folder, f)
for f in os.listdir(folder)
if 'jpeg' in f)
def create_thumbnail(filename):
im = Image.open(filename)
im.thumbnail(SIZE, Image.ANTIALIAS)
base, fname = os.path.split(filename)
save_path = os.path.join(base, SAVE_DIRECTORY, fname)
im.save(save_path)
if __name__ == '__main__':
folder = os.path.abspath(
'11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
os.mkdir(os.path.join(folder, SAVE_DIRECTORY))
images = get_image_paths(folder)
for image in images:
create_thumbnail(Image)
上邊這段程式碼的主要工作就是將遍歷傳入的資料夾中的圖片檔案,一一生成縮圖,並將這些縮圖儲存到特定資料夾中。
這我的機器上,用這一程式處理 6000 張圖片需要花費 27.9 秒。
如果我們使用 map 函式來代替 for 迴圈:
import os
import PIL
from multiprocessing import Pool
from PIL import Image
SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'
def get_image_paths(folder):
return (os.path.join(folder, f)
for f in os.listdir(folder)
if 'jpeg' in f)
def create_thumbnail(filename):
im = Image.open(filename)
im.thumbnail(SIZE, Image.ANTIALIAS)
base, fname = os.path.split(filename)
save_path = os.path.join(base, SAVE_DIRECTORY, fname)
im.save(save_path)
if __name__ == '__main__':
folder = os.path.abspath(
'11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
os.mkdir(os.path.join(folder, SAVE_DIRECTORY))
images = get_image_paths(folder)
pool = Pool()
pool.map(creat_thumbnail, images)
pool.close()
pool.join()
5.6 秒!
雖然只改動了幾行程式碼,我們卻明顯提高了程式的執行速度。在生產環境中,我們可以為 CPU 密集型任務和 IO 密集型任務分別選擇多程式和多執行緒庫來進一步提高執行速度——這也是解決死鎖問題的良方。此外,由於 map 函式並不支援手動執行緒管理,反而使得相關的 debug 工作也變得異常簡單。
到這裡,我們就實現了(基本)通過一行 Python 實現並行化。
推薦閱讀
(點選標題可跳轉閱讀)
Python 多程式並行程式設計實踐: mpi4py 的使用
覺得本文對你有幫助?請分享給更多人
關注「Python開發者」加星標,提升Python技能
喜歡就點一下「好看」唄~
相關文章
- 怎樣用一行 Python 程式碼實現並行Python並行
- 一行 Python 程式碼Python
- 一行程式碼實現微前端行程前端
- 一行程式碼完成並行任務行程並行
- 一行程式碼實現ViewPager卡片效果行程Viewpager
- 一行 Python 實現並行化 -- 日常多執行緒操作的新思路Python並行執行緒
- 一行Python程式碼能實現什麼喪心病狂的功能?Python
- 一行Java程式碼實現遊戲中交換裝備Java遊戲
- 一行程式碼實現 UIView 鏤空效果行程UIView
- 幻術,一行程式碼實現鏤空效果行程
- 一行程式碼實現滑鼠橫向滾動💪行程
- Python技巧-只用一行程式碼輕鬆實現圖片文字識別Python行程
- App 黑白化實現探索,有一行程式碼實現的方案嗎?APP行程
- 一行程式碼實現陣列降維去重排序行程陣列排序
- 「Python實用祕技08」一行程式碼解析地址資訊Python行程
- python能實現並行嗎Python並行
- 一行程式碼實現Android的跨程式呼叫與通訊行程Android
- python寫程式碼怎麼跳到下一行Python
- 一行 Python 程式碼搞定一棵樹Python
- 只要一行程式碼,實現五種 CSS 經典佈局行程CSS
- 500行 python 程式碼實現模板引擎Python
- MXAlertView,一行程式碼實現iOS帶動畫的彈出檢視View行程iOS動畫
- 一行程式碼實現iOS序列化與反序列化行程iOS
- 身份證真偽查詢介面、身份證實名認證一行python程式碼即可實現,實時資料Python
- 20 行 Python 程式碼實現加密通訊Python加密
- Python實現程式碼行數統計工具Python
- 我,python,也要一行程式Python行程
- 一行程式碼建立cell行程
- 一行 CSS 程式碼的魅力CSS
- 一行神奇的javascript程式碼JavaScript
- Python安裝與第一行程式碼和儲存程式Python行程
- Node.js一行程式碼實現靜態檔案伺服器Node.js行程伺服器
- 一行程式碼實現移動端拍照旋轉、壓縮問題行程
- C#一行程式碼實現(01)最小化到通知區域C#行程
- CSS 小技巧 | 一行程式碼實現頭像與國旗的融合CSS行程
- 開源中國系列六:一行程式碼實現開源中國登入行程
- 70 行 python 程式碼實現桌布批量下載Python
- 1行Python程式碼實現FTP伺服器PythonFTP伺服器