HasMap 底層原始碼分析

feri發表於2018-08-30

目錄

  一、什麼是雜湊表

  二、HashMap實現原理

  三、為何HashMap的陣列長度一定是2的次冪?

  四、重寫equals方法需同時重寫hashCode方法

一、什麼是雜湊表

  在討論雜湊表之前,我們先大概瞭解下其他資料結構在新增,查詢等基礎操作執行效能

  陣列:採用一段連續的儲存單元來儲存資料。對於指定下標的查詢,時間複雜度為O(1);通過給定值進行查詢,需要遍歷陣列,逐一比對給定關鍵字和陣列元素,時間複雜度為O(n),當然,對於有序陣列,則可採用二分查詢,插值查詢,斐波那契查詢等方式,可將查詢複雜度提高為O(logn);對於一般的插入刪除操作,涉及到陣列元素的移動,其平均複雜度也為O(n)

  線性連結串列:對於連結串列的新增,刪除等操作(在找到指定操作位置後),僅需處理結點間的引用即可,時間複雜度為O(1),而查詢操作需要遍歷連結串列逐一進行比對,複雜度為O(n)

  二叉樹:對一棵相對平衡的有序二叉樹,對其進行插入,查詢,刪除等操作,平均複雜度均為O(logn)。

  雜湊表:相比上述幾種資料結構,在雜湊表中進行新增,刪除,查詢等操作,效能十分之高,不考慮雜湊衝突的情況下,僅需一次定位即可完成,時間複雜度為O(1),接下來我們就來看看雜湊表是如何實現達到驚豔的常數階O(1)的。

  我們知道,資料結構的物理儲存結構只有兩種:順序儲存結構和鏈式儲存結構(像棧,佇列,樹,圖等是從邏輯結構去抽象的,對映到記憶體中,也這兩種物理組織形式),而在上面我們提到過,在陣列中根據下標查詢某個元素,一次定位就可以達到,雜湊表利用了這種特性,雜湊表的主幹就是陣列。

  比如我們要新增或查詢某個元素,我們通過把當前元素的關鍵字 通過某個函式對映到陣列中的某個位置,通過陣列下標一次定位就可完成操作。

        儲存位置 = f(關鍵字)

  其中,這個函式f一般稱為雜湊函式,這個函式的設計好壞會直接影響到雜湊表的優劣。舉個例子,比如我們要在雜湊表中執行插入操作:

  查詢操作同理,先通過雜湊函式計算出實際儲存地址,然後從陣列中對應地址取出即可。

  雜湊衝突

  然而萬事無完美,如果兩個不同的元素,通過雜湊函式得出的實際儲存地址相同怎麼辦?也就是說,當我們對某個元素進行雜湊運算,得到一個儲存地址,然後要進行插入的時候,發現已經被其他元素佔用了,其實這就是所謂的雜湊衝突,也叫雜湊碰撞。前面我們提到過,雜湊函式的設計至關重要,好的雜湊函式會盡可能地保證 計算簡單和雜湊地址分佈均勻,但是,我們需要清楚的是,陣列是一塊連續的固定長度的記憶體空間,再好的雜湊函式也不能保證得到的儲存地址絕對不發生衝突。那麼雜湊衝突如何解決呢?雜湊衝突的解決方案有多種:開放定址法(發生衝突,繼續尋找下一塊未被佔用的儲存地址),再雜湊函式法,鏈地址法,而HashMap即是採用了鏈地址法,也就是陣列+連結串列的方式,

二、HashMap實現原理

 HashMap的主幹是一個Entry陣列。Entry是HashMap的基本組成單元,每一個Entry包含一個key-value鍵值對。

//HashMap的主幹陣列,可以看到就是一個Entry陣列,初始值為空陣列{},主幹陣列的長度一定是2的次冪,至於為什麼這麼做,後面會有詳細分析。
transient Entry

相關文章