036 Valid Sudoku

weixin_33670713發表於2018-10-07

Determine if a 9x9 Sudoku board is valid. Only the filled cells need to be validated according to the following rules:
Each row must contain the digits 1-9 without repetition.
Each column must contain the digits 1-9 without repetition.
Each of the 9 3x3 sub-boxes of the grid must contain the digits 1-9 without repetition.

13050335-6ace17299a23be50.png
示意圖

The Sudoku board could be partially filled, where empty cells are filled with the character '.'.

Example:

Input:
[
["5","3",".",".","7",".",".",".","."],
["6",".",".","1","9","5",".",".","."],
[".","9","8",".",".",".",".","6","."],
["8",".",".",".","6",".",".",".","3"],
["4",".",".","8",".","3",".",".","1"],
["7",".",".",".","2",".",".",".","6"],
[".","6",".",".",".",".","2","8","."],
[".",".",".","4","1","9",".",".","5"],
[".",".",".",".","8",".",".","7","9"]
]
Output: true

Input:
[
["8","3",".",".","7",".",".",".","."],
["6",".",".","1","9","5",".",".","."],
[".","9","8",".",".",".",".","6","."],
["8",".",".",".","6",".",".",".","3"],
["4",".",".","8",".","3",".",".","1"],
["7",".",".",".","2",".",".",".","6"],
[".","6",".",".",".",".","2","8","."],
[".",".",".","4","1","9",".",".","5"],
[".",".",".",".","8",".",".","7","9"]
]
Output: false
Explanation: Same as Example 1, except with the 5 in the top left corner being
modified to 8. Since there are two 8's in the top left 3x3 sub-box, it is invalid.

Note:

A Sudoku board (partially filled) could be valid but is not necessarily solvable.
Only the filled cells need to be validated according to the mentioned rules.
The given board contain only digits 1-9 and the character '.'.
The given board size is always 9x9.

解釋下題目:

按照它所給的三個條件一一去確認即可。

1. 按行按列按塊進行查詢

實際耗時:35ms

 public boolean isValidSudoku(char[][] board) {
        //按列檢查
        for (int i = 0; i < 9; i++) {
            List<Character> list = new ArrayList<>();
            for (int j = 0; j < 9; j++) {
                if (list.contains(board[i][j])) {
                    return false;
                } else if (isNumber(board[i][j])) {
                    list.add(board[i][j]);
                }
            }
        }

        //按行檢查
        for (int j = 0; j < 9; j++) {
            List<Character> list = new ArrayList<>();
            for (int i = 0; i < 9; i++) {
                if (list.contains(board[i][j])) {
                    return false;
                } else if (isNumber(board[i][j])) {
                    list.add(board[i][j]);
                }
            }
        }

        for (int k = 0; k < 3; k++) {
            List<Character> list = new ArrayList<>();
            for (int i = 3 * k; i < 3 * k + 3; i++) {
                for (int j = 0; j < 3; j++) {
                    if (list.contains(board[i][j])) {
                        return false;
                    } else if (isNumber(board[i][j])) {
                        list.add(board[i][j]);
                    }
                }
            }
            list.clear();
            for (int i = 3 * k; i < 3 * k + 3; i++) {
                for (int j = 3; j < 6; j++) {
                    if (list.contains(board[i][j])) {
                        return false;
                    } else if (isNumber(board[i][j])) {
                        list.add(board[i][j]);
                    }
                }
            }
            list.clear();
            for (int i = 3 * k; i < 3 * k + 3; i++) {
                for (int j = 6; j < 9; j++) {
                    if (list.contains(board[i][j])) {
                        return false;
                    } else if (isNumber(board[i][j])) {
                        list.add(board[i][j]);
                    }
                }
            }
        }


        return true;
    }

    public static boolean isNumber(char a) {
        if (a - '0' >= 0 && a - '0' <= 9) {
            return true;
        }
        return false;
    }

  主要就是利用了list的contain來判斷有沒有重複

時間複雜度O(3*n^2)
空間複雜度O(1)

2. 少寫點程式碼唄

實際耗時:30ms

public boolean isValidSudoku2(char[][] board) {
        for (int i = 0; i < 9; i++) {
            HashSet<Character> rows = new HashSet<Character>();
            HashSet<Character> columns = new HashSet<Character>();
            HashSet<Character> cube = new HashSet<Character>();
            for (int j = 0; j < 9; j++) {
                if (board[i][j] != '.' && !rows.add(board[i][j]))
                    return false;
                if (board[j][i] != '.' && !columns.add(board[j][i]))
                    return false;
                int RowIndex = 3 * (i / 3);
                int ColIndex = 3 * (i % 3);
                if (board[RowIndex + j / 3][ColIndex + j % 3] != '.' && !cube.add(board[RowIndex + j / 3][ColIndex + j % 3]))
                    return false;
            }
        }
        return true;
    }

  他巧妙的地方在於對於3x3的塊的處理。

時間複雜度O(3*n^2)
空間複雜度O(1)

相關文章