【LeetCode從零單排】No221.Maximal Square
題目
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.
For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0Return 4.
解法很巧妙,我也是看了discuss,首先列出最左一列和最上面一列,剩下的解法可以看這個
Basic idea is to iterate over all columns and rows of a matrix (starting with i=j=1). If value in a cell>0 and cells to the north, west, and north-west are >0, pick smallest value of those 3 cells, take it's square root, add 1, and assign square of new value to current cell. For example given matrix
1 1 1 1 1 1
1 1 1 0 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 0 1
We get:
1 1 1 1 1 1
1 4 4 0 1 4
1 4 9 1 1 4
1 4 9 4 4 4
1 4 9 9 9 9
1 4 9 16 0 1
Our answer is the largest value in new matrix: 16
程式碼
public class Solution {
public int maximalSquare(char[][] matrix) {
if(matrix == null || matrix.length == 0) {
return 0;
}
int res = 0;
int m = matrix.length;
int n = matrix[0].length;
int[][] sq = new int[m][n];
for(int i = 0; i < m; i++) {
if(matrix[i][0] == '1') {
sq[i][0] = 1;
res = 1;
} else {
sq[i][0] = 0;
}
}
for(int j = 0; j < n; j++) {
if(matrix[0][j] == '1') {
sq[0][j] = 1;
res = 1;
} else {
sq[0][j] = 0;
}
}
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
if(matrix[i][j] == '1') {
int min = Math.min(Math.min(sq[i][j-1], sq[i-1][j]), sq[i-1][j-1]);
//if(min != 0) {
sq[i][j] = (int)Math.pow(Math.sqrt(min)+1, 2);
res = Math.max(res, sq[i][j]);
//}
}
}
}
return res;
}
}
/********************************
* 本文來自部落格 “李博Garvin“
* 轉載請標明出處:http://blog.csdn.net/buptgshengod
******************************************/
相關文章
- 【LeetCode從零單排】No38.CountAndSayLeetCode
- 【LeetCode從零單排】No.7 Reverse IntegerLeetCode
- 【LeetCode從零單排】No20.ValidParenthesesLeetCode
- 【LeetCode從零單排】No19.RemoveNthNodeFromEndofListLeetCodeREM
- 【LeetCode從零單排】No21.MergeTwoSortedListsLeetCode
- 【LeetCode從零單排】No27.Remove ElementLeetCodeREM
- 【LeetCode從零單排】No28 Implement strStr()LeetCode
- 【LeetCode從零單排】No22.Generate ParenthesesLeetCode
- 【LeetCode從零單排】No58.Length of Last WordLeetCodeAST
- 【LeetCode從零單排】No67.AddBinaryLeetCode
- 【LeetCode從零單排】No70.ClimbingStairsLeetCodeAI
- 【LeetCode從零單排】No.9 Palindrome NumberLeetCode
- 【LeetCode從零單排】No14.LongestCommonPrefixLeetCode
- 【LeetCode從零單排】No36 Valid SudokuLeetCode
- 【LeetCode從零單排】No15 3SumLeetCode
- 【LeetCode從零單排】No189 .Rotate ArrayLeetCode
- 【LeetCode從零單排】No88.Merge Sorted ArrayLeetCode
- Mysql從零單排-1MySql
- 【LeetCode從零單排】No96 Unique Binary Search TreesLeetCode
- 【LeetCode從零單排】No112 Path SumLeetCode
- 【LeetCode從零單排】No.169 Majority Element(hashmap用法)LeetCodeHashMap
- 【LeetCode從零單排】No83 Remove Duplicates from Sorted ListLeetCodeREM
- 【LeetCode從零單排】No26.Remove Duplicates from Sorted ArrayLeetCodeREM
- 從零單排學Redis【白銀】Redis
- 【LeetCode從零單排】No 3 Longest Substring Without Repeating CharactersLeetCode
- 【LeetCode從零單排】No129 Sum Root to Leaf NumbersLeetCode
- 【LeetCode從零單排】No.160 Intersection of Two Linked ListsLeetCode
- 從零單排學Redis【黃金】Redis
- 【LeetCode從零單排】No121 Best Time to Buy and Sell StockLeetCode
- 【LeetCode從零單排】No118 Pascal's TriangleLeetCode
- 【LeetCode從零單排】No104 Maximum Depth of Binary TreeLeetCode
- 【LeetCode從零單排】No 114 Flatten Binary Tree to Linked ListLeetCode
- 【LeetCode從零單排】No 191.Number of 1 Bits(考察位運算)LeetCode
- 從零單排學Redis【鉑金二】Redis
- 從零單排學Redis【鉑金一】Redis
- 【LeetCode從零單排】No102 Binary Tree Level Order TraversalLeetCode
- 【LeetCode從零單排】No.135Candy(雙向動態規劃)LeetCode動態規劃
- 「從零單排canal 07」 parser模組原始碼解析原始碼