kafka_2.11-0.10.2.1 的生產者 消費者的示例(new producer api)
環境,以及單獨的pom.xml檔案
環境:java 1.8 ,kafka_2.11-0.10.2.1
pom.xml檔案如下
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>kafka_demo</groupId>
<artifactId>kafka_demo</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<kafka.version>0.10.2.1</kafka.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>${kafka.version}</version>
</dependency>
</dependencies>
</project>
1、生產者程式碼
package p_c_demo1;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import utils.KafkaProperties;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
/**
*
*/
public class Producer_demo1 extends Thread{
public static void main(String[] args) {
//boolean isAsync = args.length == 0 || !args[0].trim().equalsIgnoreCase("sync");
boolean isAsync = true;
Producer_demo1 producerThread = new Producer_demo1(KafkaProperties.INTOPIC, isAsync);
producerThread.start();
}
private final KafkaProducer<Integer, String> producer;
private final String topic;
private final Boolean isAsync;
public Producer_demo1(String topic, Boolean isAsync) {
Properties props = new Properties();
props.put("bootstrap.servers",
KafkaProperties.KAFKA_SERVER_URL + ":" + KafkaProperties.KAFKA_SERVER_PORT0
+ "," + KafkaProperties.KAFKA_SERVER_URL + ":" + KafkaProperties.KAFKA_SERVER_PORT1
+ "," + KafkaProperties.KAFKA_SERVER_URL + ":" + KafkaProperties.KAFKA_SERVER_PORT2);
props.put("client.id", "Producer_demo1");
//開始的時候下面5個引數未設定,導致消費時取不到資料,需要注意
/* acks=0時,producer不會等待確認,直接新增到socket等待傳送;
acks=1時,等待leader寫到local log就行;
acks=all或acks=-1時,等待isr中所有副本確認
*/
props.put("acks", "all");
//傳送失敗重試
props.put("retries", 0);
//批次傳送,不會嘗試大於此值的容量
props.put("batch.size", 16384);
//預設設定為0,
// 具體引數參考:http://kafka.apache.org/0102/documentation.html#producerconfigs
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
producer = new KafkaProducer<Integer, String>(props);
//方法傳進來的引數
this.topic = topic;
this.isAsync = isAsync;
}
//持續保持資料傳送
public void run() {
System.out.println("ProducerThread--run");
int messageNo = 1;
//這裡面應該是自己的資料邏輯處理
while (true) {
String messageStr = "Message_" + messageNo;
long startTime = System.currentTimeMillis();
/*
檢視原始碼可以知道第二個send其實就是呼叫的第一個send 但是callback為null
send
public Future<RecordMetadata> send(ProducerRecord<K, V> record) {
return this.send(record, (Callback)null);
}
*/
if (isAsync) { // Send asynchronously
producer.send(
new ProducerRecord<Integer, String>(topic, messageNo, messageStr),
new DemoCallBack(startTime, messageNo, messageStr));
} else { // Send synchronously
try {
producer.send(new ProducerRecord<Integer, String>(topic,messageNo,messageStr)).get();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (ExecutionException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println("Sent message: (" + messageNo + ", " + messageStr + ")");
}
//messageNo;
System.out.println("Sent message: (" + messageNo++ + ", " + messageStr + ")");
//休息0.5秒
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
if(messageNo==5000){
//break;
}
}
}
}
class DemoCallBack implements Callback {
private final long startTime;
private final int key;
private final String message;
public DemoCallBack(long startTime, int key, String message) {
this.startTime = startTime;
this.key = key;
this.message = message;
}
/**
* A callback method the user can implement to provide asynchronous handling of request completion. This method will
* be called when the record sent to the server has been acknowledged. Exactly one of the arguments will be
* non-null.
*
* @param metadata The metadata for the record that was sent (i.e. the partition and offset). Null if an error
* occurred.
* @param exception The exception thrown during processing of this record. Null if no error occurred.
*/
public void onCompletion(RecordMetadata metadata, Exception exception) {
long elapsedTime = System.currentTimeMillis() - startTime;
if (metadata != null) {
System.out.println(
"message(" + key + ", " + message + ") sent to partition(" + metadata.partition() +
"), " +
"offset(" + metadata.offset() + ") in " + elapsedTime + " ms");
} else {
exception.printStackTrace();
}
}
}
2、消費者程式碼
package consumerDemo;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import utils.KafkaProperties;
import java.util.Arrays;
import java.util.Properties;
public class Conumer_demo1 extends Thread{
public static void main(String[] args) {
p_c_demo1.Conumer_demo1 consumerThread = new p_c_demo1.Conumer_demo1(KafkaProperties.INTOPIC);
consumerThread.start();
}
private final KafkaConsumer<Integer, String> consumer;
private final String topic;
private static final Logger LOG = LoggerFactory.getLogger(Conumer_demo1.class);
public Conumer_demo1(String topic) {
Properties props = new Properties();
//bootstrap.servers 必要
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
KafkaProperties.KAFKA_SERVER_URL + ":" + KafkaProperties.KAFKA_SERVER_PORT0
+ "," + KafkaProperties.KAFKA_SERVER_URL + ":" + KafkaProperties.KAFKA_SERVER_PORT1
+ "," + KafkaProperties.KAFKA_SERVER_URL + ":" + KafkaProperties.KAFKA_SERVER_PORT2);
//group id
props.put(ConsumerConfig.GROUP_ID_CONFIG, "producer-consumer-demo1");
//是否後臺自動提交offset 到kafka
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
//消費者偏移自動提交到Kafka的頻率(以毫秒為單位enable.auto.commit)設定為true
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
//故障檢測,心跳檢測機制 的間隔時間,,在該值範圍內,沒有接收到心跳,則會刪除該消費者
//並啟動再平衡(rebanlance),值必須在group.min.session.timeout 和 group.max.session.timeout.ms之間
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "30000");
//key - value 的序列化類
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.IntegerDeserializer");
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
this.consumer = new KafkaConsumer<Integer, String>(props);
this.topic = topic;
}
public void run() {
System.out.println("ConsumerThread--run");
consumer.subscribe(Arrays.asList(KafkaProperties.INTOPIC));
// consumer.subscribe(Collections.singletonList(this.topic));
while (true) {
//consumer.poll()
ConsumerRecords<Integer, String> records = consumer.poll(200);
for (ConsumerRecord<Integer, String> record : records) {
System.out.println("Received message: (" + record.key() + ", " + record.value()
+ ") offset " + record.offset()
+ " partition " + record.partition() + ")");
}
}
}
}
3、還有一個工具類,放我們的各項引數設定
package utils;
public class KafkaProperties {
public static final String INTOPIC = "producer_consumer_demo1";
//public static final String OUTTOPIC = "topic2";
public static final String KAFKA_SERVER_URL = "make.spark.com";
public static final int KAFKA_SERVER_PORT0 = 9092;
public static final int KAFKA_SERVER_PORT1 = 9093;
public static final int KAFKA_SERVER_PORT2 = 9094;
public static final int KAFKA_PRODUCER_BUFFER_SIZE = 65536;
public static final int CONNECTION_TIMEOUT = 100000;
public static final String CLIENT_ID = "SimpleConsumerDemoClient";
private KafkaProperties() {}
}
這個時候啟動我們,生產者,就會開始生產資料,同時執行我麼你的消費者 就可以看到我們的消費資訊,具體在哪個分割槽,消費到那個偏移量,如果同時多開,兩個消費者,可以看到rebalane的機制,會重新再平衡每個消費者,消費的分割槽,這裡的前提是,要修改你的topic,改成多個分割槽才可以,生產者預設建立的topic是隻有一個分割槽的。
相關文章
- Java多執行緒——生產者消費者示例Java執行緒
- 生產者消費者模式模式
- 生產者消費者模型模型
- 生產消費者模式模式
- kafka中生產者和消費者APIKafkaAPI
- 九、生產者與消費者模式模式
- python 生產者消費者模式Python模式
- ActiveMQ 生產者和消費者demoMQ
- Qt基於QSemaphore的生產者消費者模型QT模型
- java編寫生產者/消費者模式的程式。Java模式
- Python中的生產者消費者問題Python
- Java實現生產者和消費者Java
- 新手練習-消費者生產者模型模型
- Java實現生產者-消費者模型Java模型
- 生產者和消費者(.net實現)
- java實現生產者消費者問題Java
- 阻塞佇列和生產者-消費者模式佇列模式
- linux 生產者與消費者問題Linux
- 多執行緒之生產者消費者執行緒
- 直觀理解生產者消費者問題
- Java 生產者消費者模式詳細分析Java模式
- 插曲:Kafka的生產者案例和消費者原理解析Kafka
- 分享一個生產者-消費者的真實場景
- 多生產者-消費者中假死現象的處理
- 讀者寫者與生產者消費者應用場景
- 生產者與消費者之Android audioAndroid
- 併發設計模式---生產者/消費者模式設計模式
- 使用BlockQueue實現生產者和消費者模式BloC模式
- 使用Disruptor實現生產者和消費者模型模型
- JAVA執行緒消費者與生產者模型Java執行緒模型
- Java多執行緒——消費者與生產者的關係Java執行緒
- 多執行緒下的生產者和消費者-BlockingQueue執行緒BloC
- Java中的設計模式(二):生產者-消費者模式與觀察者模式Java設計模式
- python中多程式消費者生產者問題Python
- 「Kafka應用」PHP實現生產者與消費者KafkaPHP
- 架構設計:生產者/消費者模式[0]:概述架構模式
- golang 併發程式設計之生產者消費者Golang程式設計
- Java多執行緒——生產者和消費者模式Java執行緒模式