之前看協程相關的東西時,曾一念而過想著怎麼自己來實現一個給 C++ 用,但在儲存現場恢復現場之類的細節上被自己的想法嚇住,也沒有深入去研究,後面一丟開就忘了。近來微博上看人在討論怎麼實現一個 user space 上的執行緒庫,有人提到了 setcontext,swapcontext 之類的函式,說可以用來儲存和切換上下文,我忽然覺得這應該也能用來實現協程,回頭一搜,果然已經有人曾用這些函式做過相關的事情,略略看了幾個,覺得到底不大好用,還不如自己搞一個簡單點的。
說到 c++ 上的協程,boost 裡其實已經有相關的實現了,不過介面上看用起來有些麻煩,單純從語法上來說,我覺得 Lua 的協程最簡潔易用了,概念上也比較直接,為什麼不做一個類似的呢?所以我就打算照著 Lua 來山寨一個,只需要支援四個介面就夠了:
1)create coroutine。
2)run/resume coroutine。
3)Yield running corouinte。
4)IsCoroutineAlive。
儲存與恢復上下文
實現協程/執行緒,最麻煩莫過於儲存和切換上下文了,好在 makecontext,swapcontext 這幾個函式相當好用,已經完全幫忙解決了這個難題:makecontext 可以幫我們建立起協程的上下文,swapcontext 則可以切換不同的上下文,從而實現那種把當前函式暫時停住,切換出去執行別的函式然後再切換回來繼續執行的效果:
#include <iostream> #include <ucontext.h> using namespace std; static char g_stack[2048]; static ucontext_t ctx,ctx_main; void func() { // do something. cout << "enter func" << endl; swapcontext(&ctx, &ctx_main); cout << "func1 resume from yield" << endl; // continue to do something. } int main() { getcontext(&ctx); ctx.uc_stack.ss_sp = g_stack; ctx.uc_stack.ss_size = sizeof g_stack; ctx.uc_link = &ctx_main; makecontext(&ctx, func, 0); cout << "in main, before coroutine starts" << endl; swapcontext(&ctx_main, &ctx); cout << "back to main" << endl; swapcontext(&ctx_main, &ctx); cout << "back to main again" << endl; return 0; }
如上程式碼所示,顯然我們只要簡單包裝一下 swapcontext,很容易就可以實現 Yield 和 Resume,有了它們的幫助協程做起來就容易多了。
使用與實現
在使用 makecontext,swapcontext 的基礎上,我花了一個多小時簡單實現了一個協程庫,參看這裡,程式碼寫下來總共才200多行,出乎意料的簡單,用起來也很方便了:
#include "coroutine.h" #include <iostream> using namespace std; CoroutineScheduler* sched = NULL; void func1(void* arg) { uintptr_t ret; cout << "function1 a now!,arg:" << arg << ", start to yield." << endl; ret = sched->Yield((uintptr_t)"func1 yield 1"); cout << "1.fun1 return from yield:" << (const char*)ret << endl; ret = sched->Yield((uintptr_t)"func1 yield 2"); cout << "2.fun1 return from yield:" << (const char*)ret << ", going to stop" << endl; } void func2(void* s) { cout << "function2 a now!, arg:" << s << ", start to yield." << endl; const char* y = (const char*)sched->Yield((uintptr_t)"func2 yield 1"); cout << "fun2 return from yield:" << y <<", going to stop" << endl; } int main() { sched = new CoroutineScheduler(); bool stop = false; int f1 = sched->CreateCoroutine(func1, (void*)111); int f2 = sched->CreateCoroutine(func2, (void*)222); while (!stop) { stop = true; if (sched->IsCoroutineAlive(f1)) { stop = false; const char* y1 = (const char*)sched->ResumeCoroutine(f1, (uintptr_t)"resume func1"); cout << "func1 yield:" << y1 << endl; } if (sched->IsCoroutineAlive(f2)) { stop = false; const char* y2 = (const char*)sched->ResumeCoroutine(f2, (uintptr_t)"resume func2"); cout << "func2 yield:" << y2 << endl; } } delete sched; return 0; }
如上所示,Yield 裡傳的引數會在呼叫 Resume 時被返回,同理 Resume 裡的第二個引數,會在 Yield 裡被返回,這種機制也是模仿 Lua 來的,有些時候可以用來在協程間傳遞一些引數,很方便,看起來也挺酷的,但在實現上卻相當地簡潔,核心程式碼如下:
// static function void CoroutineScheduler::SchedulerImpl::Schedule(void* arg) { assert(arg); SchedulerImpl* sched = (SchedulerImpl*) arg; int running = sched->running_; coroutine* cor = sched->id2routine_[running]; assert(cor); cor->func(cor->arg); sched->running_ = -1; cor->status = CO_FINISHED; } // resume coroutine. uintptr_t CoroutineScheduler::SchedulerImpl::ResumeCoroutine(int id, uintptr_t y) { coroutine* cor = id2routine_[id]; if (cor == NULL || cor->status == CO_RUNNING) return 0; cor->yield = y; switch (cor->status) { case CO_READY: { getcontext(&cor->cxt); cor->status = CO_RUNNING; cor->cxt.uc_stack.ss_sp = cor->stack; cor->cxt.uc_stack.ss_size = stacksize_; // sucessor context. cor->cxt.uc_link = &mainContext_; running_ = id; makecontext(&cor->cxt, (void (*)())Schedule, 1, this); swapcontext(&mainContext_, &cor->cxt); } break; case CO_SUSPENDED: { running_ = id; cor->status = CO_RUNNING; swapcontext(&mainContext_, &cor->cxt); } break; default: assert(0); } uintptr_t ret = cor->yield; if (running_ == -1 && cor->status == CO_FINISHED) DestroyCoroutine(id); return ret; } uintptr_t CoroutineScheduler::SchedulerImpl::Yield(uintptr_t y) { if (running_ < 0) return 0; int cur = running_; running_ = -1; coroutine* cor = id2routine_[cur]; cor->yield = y; cor->status = CO_SUSPENDED; swapcontext(&cor->cxt, &mainContext_); return cor->yield; }
單就程式碼量和程式結構而言,以上的實現很簡潔,但細節上看,每個協程都要分配一個一定大小的棧空間,空間效率上可能不大好,不夠輕量;執行效率上來說,swapcontext 的執行效率如何,現在也未知,只是出於學習的目的,就先這樣吧,可以再瞭解瞭解別人是怎麼做的。