BZOJ2649 : riddle

Claris發表於2019-01-15

題意同3495,但是記憶體限制收緊了,不能採用3495的前字尾優化建圖的方式。

注意到“每個集合恰好選擇一個點”可以放寬成“每個集合最多選擇一個點”,對於最後求出的方案裡,如果某個集合沒選點,任選一個就好了。

考慮2-SAT建圖,有兩類邊:

1. 對於每條給定的邊$(u,v)$:如果不選$u$就必須選$v$,如果不選$v$就必須選$u$。

2. 對於每個集合:如果選了一個點就不能選其它所有點。

第二類邊不能直接建圖,但是在Kosaraju演算法中DFS圖的時候,每個點$x$和$x$所在集合內除了$x$之外的所有點都連了一條第二類邊,需要用一個資料結構跳過那些已經搜過的且不是$x$的點。用一個支援雙端pop的佇列維護就可以了,如果這個集合不是隻剩$x$沒搜過,那麼兩端至少可以消費一個點。

時間複雜度$O(n+m+k)$。

 

#include<cstdio>
const int N=2000010,M=1000010,BUF=25000000;
char Buf[BUF],*buf=Buf;
int n,m,K,o,i,j,x,y,S[M],T[M],st[M],en[M],pool[M],tot,at[M];
int e[M][2],g[N],v[N],nxt[N],ed;
int q[N],t,f[N];
bool vis[N];
inline void read(int&a){for(a=0;*buf<48;buf++);while(*buf>47)a=a*10+*buf++-48;}
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
void dfs1(int x){
  if(vis[x])return;
  vis[x]=1;
  for(int i=g[x];i;i=nxt[i])dfs1(v[i]);
  if(x>n)while(S[at[x-n]]<=T[at[x-n]]){
    if(pool[S[at[x-n]]]!=x-n)dfs1(pool[S[at[x-n]]++]);
    else if(pool[T[at[x-n]]]!=x-n)dfs1(pool[T[at[x-n]]--]);
    else break;
  }
  q[++t]=x;
}
void dfs2(int x){
  if(!vis[x])return;
  vis[x]=0,f[x]=o;
  for(int i=g[x];i;i=nxt[i])dfs2(v[i]);
  if(x<=n)while(S[at[x]]<=T[at[x]]){
    if(pool[S[at[x]]]!=x)dfs2(pool[S[at[x]]++]+n);
    else if(pool[T[at[x]]]!=x)dfs2(pool[T[at[x]]--]+n);
    else break;
  }
}
int main(){
  fread(Buf,1,BUF,stdin);read(n),read(m),read(K);
  for(i=1;i<=m;i++){
    read(x),read(y);
    e[i][0]=x,e[i][1]=y;
    add(x,y+n),add(y,x+n);
  }
  for(i=1;i<=K;i++){
    read(y);
    st[i]=tot+1;
    while(y--){
      read(x);
      at[x]=i;
      pool[++tot]=x;
    }
    en[i]=tot;
  }
  for(i=1;i<=K;i++)S[i]=st[i],T[i]=en[i];
  for(i=1;i<=n+n;i++)if(!vis[i])dfs1(i);
  for(ed=0,i=1;i<=n+n;i++)g[i]=0;
  for(i=1;i<=m;i++){
    x=e[i][0],y=e[i][1];
    add(y+n,x),add(x+n,y);
  }
  for(i=1;i<=K;i++)S[i]=st[i],T[i]=en[i];
  for(i=t;i;i--)if(vis[q[i]])o++,dfs2(q[i]);
  for(i=1;i<=n;i++)if(f[i]==f[i+n])return puts("NIE"),0;
  puts("TAK");
  for(i=1;i<=K;i++)st[i]=pool[st[i]];
  for(i=1;i<=n;i++)if(f[i]<f[i+n])st[at[i]]=i;
  for(i=1;i<=K;i++)printf("%d ",st[i]);
  return 0;
}