【Java X 原始碼剖析】Collection的原始碼分析-JDK1.8-仍在更新
Collection介面下的結構
目錄
LinkedHashSet(父類HashSet,底層Map為LinkedHashMap)
①public boolean offer(E e) / public boolean add(E e)
addAll(int index, Collection c):
②public boolean remove(Object o)
②public E set(int index, E element)
③public int indexOf(Object o) :可以查詢null元素,意味ArrayList可以存放null
⑤public E remove(int index):刪除時會移動大量元素
Vector(過時的類,每個方法都有Synchronized)[可以存null]
Set
HashSet
一些屬性
*所有的鍵都有同一個值PRESENT
public class HashSet<E>
extends AbstractSet<E>
implements Set<E>, Cloneable, java.io.Serializable
{
private transient HashMap<E,Object> map;
// Dummy value to associate with an Object in the backing Map
//用作所有鍵的值,因為HashSet中只存鍵不存值
private static final Object PRESENT = new Object();
}
方法都是呼叫HashMap中的方法,不再重複
public int size() {
return map.size();
}
public boolean isEmpty() {
return map.isEmpty();
}
public boolean contains(Object o) {
return map.containsKey(o);
}
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
public boolean remove(Object o) {
return map.remove(o)==PRESENT;
}
public void clear() {
map.clear();
}
LinkedHashSet(父類HashSet,底層Map為LinkedHashMap)
一些屬性
public class LinkedHashSet<E>
extends HashSet<E>
implements Set<E>, Cloneable, java.io.Serializable {
//沒有屬性,都是呼叫父類的屬性
}
建構函式
呼叫父類的建構函式,使其底層實現變成LinkedHashMap
//兩個方法呼叫同一個父類的構造方法
public LinkedHashSet(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor, true);
}
public LinkedHashSet(int initialCapacity) {
super(initialCapacity, .75f, true);
}
public LinkedHashSet() {
super(16, .75f, true);
}
public LinkedHashSet(Collection<? extends E> c) {
super(Math.max(2*c.size(), 11), .75f, true);
addAll(c);
}
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
map = new LinkedHashMap<>(initialCapacity, loadFactor);
}
TreeSet(依賴TreeMap)
一些屬性
public class TreeSet<E> extends AbstractSet<E>
implements NavigableSet<E>, Cloneable, java.io.Serializable
{
/**
* The backing map.
*/
private transient NavigableMap<E,Object> m;
// Dummy value to associate with an Object in the backing Map
//同樣的套路:所有鍵的value都是PRESENT
private static final Object PRESENT = new Object();
}
建構函式
public TreeSet(Comparator<? super E> comparator) {
this(new TreeMap<>(comparator));
}
public TreeSet() {
this(new TreeMap<E,Object>());
}
//還有別的構造方法就不一一列舉了
*底層方法實現同TreeMap
public int size() {
return m.size();
}
public boolean isEmpty() {
return m.isEmpty();
}
public boolean contains(Object o) {
return m.containsKey(o);
}
public boolean add(E e) {
return m.put(e, PRESENT)==null;
}
public boolean remove(Object o) {
return m.remove(o)==PRESENT;
}
public void clear() {
m.clear();
}
ConcurrentSkipListSet
一些屬性
建構函式
①
②
List-Queue
PriorityQueue(預設小頂堆)
①public boolean offer(E e) / public boolean add(E e)
public boolean add(E e) {
return offer(e);
}
public boolean offer(E e) {
if (e == null)
throw new NullPointerException();
modCount++;
int i = size;
if (i >= queue.length)
grow(i + 1);
size = i + 1;
if (i == 0)
queue[0] = e;
else
siftUp(i, e);
return true;
}
/**
* Increases the capacity of the array.
*
* @param minCapacity the desired minimum capacity
*/
//陣列容量已經不滿足下標了,遂擴容
private void grow(int minCapacity) {
int oldCapacity = queue.length;
// Double size if small; else grow by 50%
//如果原本容量小於64就變2n+2;否則變1.5n
int newCapacity = oldCapacity + ((oldCapacity < 64) ?
(oldCapacity + 2) :
(oldCapacity >> 1));
// overflow-conscious code
//陣列最大值 or Integer_MAX_VALUE
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
queue = Arrays.copyOf(queue, newCapacity);
}
private void siftUp(int k, E x) {
if (comparator != null)
siftUpUsingComparator(k, x);
else
siftUpComparable(k, x);
}
//有比較器(預設小頂堆) k為x在陣列中的下標
@SuppressWarnings("unchecked")
private void siftUpUsingComparator(int k, E x) {
while (k > 0) {
//父親結點陣列下標
int parent = (k - 1) >>> 1;
Object e = queue[parent];
//比父親大,小頂堆,就不用在往上移了
if (comparator.compare(x, (E) e) >= 0)
break;
//暫時不用賦值x,最後迴圈出去再賦值
queue[k] = e;
k = parent;
}
queue[k] = x;
}
//Queue沒有比較器,使用插入的物件的比較器
@SuppressWarnings("unchecked")
private void siftUpComparable(int k, E x) {
Comparable<? super E> key = (Comparable<? super E>) x;
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = queue[parent];
if (key.compareTo((E) e) >= 0)
break;
queue[k] = e;
k = parent;
}
queue[k] = key;
}
List
LinkedList
*可以存null,不支援隨機讀取,可以不用考慮擴容
一些屬性
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
transient int size = 0;
/**
* Pointer to first node.
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
transient Node<E> first;
/**
* Pointer to last node.
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
transient Node<E> last;
}
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
建構函式
public LinkedList() {
}
//呼叫無參構造器,然後將集合c中元素新增到LinkedList中
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
public boolean addAll(Collection<? extends E> c) {
//預設從尾結點開始插入集合中資料
return addAll(size, c);
}
//返回false表示集合中沒有資料,返回true表示新增成功
public boolean addAll(int index, Collection<? extends E> c) {
//可以檢查是否超過size或者小於0(不同於ArrayList只能檢查是否超過size)
checkPositionIndex(index);
//熟悉的套路:將集合轉換成Object型別陣列
Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;
Node<E> pred, succ;
if (index == size) {
//直接從尾結點插入
succ = null;
pred = last;
} else {
//將集合中資料從第index個結點後開始插入
//獲取第index個node(如果小於size/2,從頭找;如果大於size/2,從尾找)
succ = node(index);
pred = succ.prev;
}
//依次插入到連結串列尾
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
}
if (succ == null) {
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
}
size += numNew;
modCount++;
return true;
}
private void checkPositionIndex(int index) {
if (!isPositionIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* Tells if the argument is the index of a valid position for an
* iterator or an add operation.
*/
//新增操作或者迭代器時使用
private boolean isPositionIndex(int index) {
return index >= 0 && index <= size;
}
addAll(int index, Collection<? extends E> c):
根據index獲取到第index個結點方法
Node<E> node(int index) {
// assert isElementIndex(index);
//分為左半和右半,提高查詢效率
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
①public boolean add(E e)
public boolean add(E e) {
linkLast(e);
return true;
}
/**
* Links e as last element.
*/
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
//如果連結串列原本為空(last/first都為空,上面為last賦值,下面為first賦值,指向同一節點)
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
②public boolean remove(Object o)
public boolean remove(Object o) {
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
/**
* Unlinks non-null node x.
*/
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;
//1.前驅結點空-->刪除的是頭結點
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
//2.後繼結點為空-->刪除的是尾結點
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
//3.結點值設定為空
x.item = null;
size--;
modCount++;
return element;
}
ArrayList:動態擴容
*可以插入null元素,還可以任意隨機讀取,不好的地方就是刪除時需要移動大量元素
一些屬性
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
/**
* The size of the ArrayList (the number of elements it contains).
* 實際元素數量
* @serial
*/
private int size;
/**
* Default initial capacity.
* 預設初始化容量
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* Shared empty array instance used for empty instances.
*/
//用來賦值給elementData元素陣列
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
* Shared empty array instance used for default sized empty instances. We
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
* first element is added.
*/
//當使用無參構造器,用來賦值給elementData元素陣列
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* The array buffer into which the elements of the ArrayList are stored.
* The capacity of the ArrayList is the length of this array buffer. Any
* empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
* will be expanded to DEFAULT_CAPACITY when the first element is added.
* 元素陣列
*/
//存的是Object,get的時候會偷偷轉型
transient Object[] elementData; // non-private to simplify nested class access
}
建構函式
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) { //初始容量>0
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) { //初始容量為0,返回空物件陣列
this.elementData = EMPTY_ELEMENTDATA;
} else { //初始容量<0,丟擲非法初始容量異常
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
/**
* Constructs an empty list with an initial capacity of ten.
*/
public ArrayList() {
//未賦值引數,會給elementData設定為空陣列
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
/**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public ArrayList(Collection<? extends E> c) {
//將傳遞進來的集合轉換成陣列
elementData = c.toArray();
//如果陣列不為空
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
//轉換的陣列可能沒轉換成Object型別陣列
if (elementData.getClass() != Object[].class)
//採用複製的方式,將元素複製進elementData
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
//如果集合為空,就傳遞空陣列給元素陣列
this.elementData = EMPTY_ELEMENTDATA;
}
}
①public boolean add(E e)
/**
* Appends the specified element to the end of this list.
* 將指定元素新增到此列表的末尾
* @param e element to be appended to this list
* @return <tt>true</tt> (as specified by {@link Collection#add})
*/
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
//minCapacity 指的是所需的最小容量
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
private static int calculateCapacity(Object[] elementData, int minCapacity) {
//判斷是否為空陣列(無參構造器構造的ArrayList)
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
private void ensureExplicitCapacity(int minCapacity) {
//熟悉的操作次數+1
modCount++;
// overflow-conscious code
//溢位
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
/**
* Increases the capacity to ensure that it can hold at least the
* number of elements specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
//新容量為舊容量的1.5倍
int newCapacity = oldCapacity + (oldCapacity >> 1);
//新容量小於引數指定容量
//也就是空陣列插入時,直接將容量從0擴充成10,否則會變成1,這樣新陣列一開始插入的時候很容易觸發擴容
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
//新容量超過了陣列能接受的最大容量
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
//拷貝+擴容
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
*為了防止ArrayList在初期插入資料時頻繁擴容,所以對於沒有設定長度限制的,第一次插入資料就給予了預設長度(10)
②public E set(int index, E element)
/**
* Replaces the element at the specified position in this list with
* the specified element.
*
* @param index index of the element to replace
* @param element element to be stored at the specified position
* @return the element previously at the specified position
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
//將列表中指定元素替換
public E set(int index, E element) {
//檢查index合法性
rangeCheck(index);
//三部曲:得到舊值,替換舊值,返回舊值
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
/**
* Checks if the given index is in range. If not, throws an appropriate
* runtime exception. This method does *not* check if the index is
* negative: It is always used immediately prior to an array access,
* which throws an ArrayIndexOutOfBoundsException if index is negative.
*/
//不檢查負數,似乎交給陣列類來進行檢查了?如果是負數丟擲ArrayIndexOutOfBoundsException,和下面這個異常不一樣
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
③public int indexOf(Object o) :可以查詢null元素,意味ArrayList可以存放null
/**
* Returns the index of the first occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the lowest index <tt>i</tt> such that
* <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>,
* or -1 if there is no such index.
*/
//返回第一個o的陣列下標,如果不存在就返回-1
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
//null就用不了equals方法了
if (o.equals(elementData[i]))
return i;
}
return -1;
}
④public E get(int index)
/**
* Returns the element at the specified position in this list.
*
* @param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
//返回指定位置的元素
public E get(int index) {
//index範圍檢查
rangeCheck(index);
return elementData(index);
}
隱藏了向下轉型的細節(將Object轉成了E)
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
⑤public E remove(int index):刪除時會移動大量元素
public E remove(int index) {
rangeCheck(index);
modCount++; //和新增一樣,操作次數+1
E oldValue = elementData(index);
//需要移動的元素個數
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
//真正意義上的刪除,將要刪除的元素設定為null,這樣才gc,而不是僅僅改一個size
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
通過本地陣列複製函式來進行移動元素
/* 需要被複制的陣列
* @param src the source array.
* 從哪個元素開始複製
* @param srcPos starting position in the source array.
* 需要被複制到哪個陣列
* @param dest the destination array.
* 從新陣列的哪個位置賦值
* @param destPos starting position in the destination data.
* 需要複製的數
* @param length the number of array elements to be copied.
*/
public static native void arraycopy(Object src, int srcPos,
Object dest, int destPos,
int length);
Vector(過時的類,每個方法都有Synchronized)[可以存null]
首先說一下Vector是否執行緒安全的結論:
Vector 和 ArrayList 實現了同一介面 List, 但所有的 Vector 的方法都具有 synchronized 關鍵修飾,也就單一操作還是執行緒安全的。但對於複合操作,Vector 仍然需要進行同步處理
複合操作:
if (!vector.contains(element))
vector.add(element);
...
}
在執行contains()和add()方法時,可以保證沒有方法在使用Vector物件,都是原子性操作(Synchronized作用)。
但是執行完contains(),無法保證下一個執行的就是add()
要想實現複合操作的執行緒安全,還得用Synchronized再加一個鎖,鎖住Vector物件
Synchronized(vector){
boolean b = vector.contains(element);
if(!b)vector.add(element);
}
這也就是Vector被棄用原因,明明一個鎖就夠,還得兩個鎖才能解決執行緒安全問題
Vector屬性
public class Vector<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
/**
* The array buffer into which the components of the vector are
* stored. The capacity of the vector is the length of this array buffer,
* and is at least large enough to contain all the vector's elements.
*
* <p>Any array elements following the last element in the Vector are null.
*
* @serial
*/
//Vector底層實現陣列
protected Object[] elementData;
/**
* The number of valid components in this {@code Vector} object.
* Components {@code elementData[0]} through
* {@code elementData[elementCount-1]} are the actual items.
*
* @serial
*/
//實際元素個數
protected int elementCount;
/**
* The amount by which the capacity of the vector is automatically
* incremented when its size becomes greater than its capacity. If
* the capacity increment is less than or equal to zero, the capacity
* of the vector is doubled each time it needs to grow.
*
* @serial
*/
//如果擴容未指定此引數,Vector就增長為原來兩倍
//如果擴容指定此引數(capacitryIncrement>0),就增加capacityIncrement這麼多容量
protected int capacityIncrement;
}
建構函式
//下面兩個構造器的最終構造器
//設定初始引數和增長容量大小,以及新建陣列空間
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
this.capacityIncrement = capacityIncrement;
}
/**
* Constructs an empty vector with the specified initial capacity and
* with its capacity increment equal to zero.
*
* @param initialCapacity the initial capacity of the vector
* @throws IllegalArgumentException if the specified initial capacity
* is negative
*/
//指定陣列空間大小,沒有指定增加容量大小
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}
/**
* Constructs an empty vector so that its internal data array
* has size {@code 10} and its standard capacity increment is
* zero.
*/
//陣列空間為10,沒有設定增加容量大小
public Vector() {
this(10);
}
/**
* Constructs a vector containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* @param c the collection whose elements are to be placed into this
* vector
* @throws NullPointerException if the specified collection is null
* @since 1.2
*/
//還是熟悉的套路:c.toArray可能不是Object物件陣列;不是的話就手動轉(Arrays.copyOf)
public Vector(Collection<? extends E> c) {
elementData = c.toArray();
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
}
Vector的方法實現還是比較簡單的,就不一一列出了。
Stack
Stack類的程式碼就只有這麼多,還是比較簡單的。
通過繼承Vector(陣列)來實現,主要是pop()
public
class Stack<E> extends Vector<E> {
/**
* Creates an empty Stack.
*/
public Stack() {
}
//直接新增到陣列
public E push(E item) {
addElement(item);
return item;
}
//很好理解,拿陣列大小最後一個元素
public synchronized E pop() {
E obj;
int len = size();
obj = peek();
//檢查len-1合法性,將最後一個元素置為空(gc),數量-1
removeElementAt(len - 1);
return obj;
}
public synchronized E peek() {
int len = size();
if (len == 0)
throw new EmptyStackException();
return elementAt(len - 1);
}
public boolean empty() {
return size() == 0;
}
/**
* Returns the 1-based position where an object is on this stack.
* If the object <tt>o</tt> occurs as an item in this stack, this
* method returns the distance from the top of the stack of the
* occurrence nearest the top of the stack; the topmost item on the
* stack is considered to be at distance <tt>1</tt>. The <tt>equals</tt>
* method is used to compare <tt>o</tt> to the
* items in this stack.
*
* @param o the desired object.
* @return the 1-based position from the top of the stack where
* the object is located; the return value <code>-1</code>
* indicates that the object is not on the stack.
*/
//返回距離棧頂的距離
public synchronized int search(Object o) {
int i = lastIndexOf(o);
if (i >= 0) {
return size() - i;
}
return -1;
}
}
相關文章
- 【Java X 原始碼剖析】Map的原始碼分析--JDK1.8-仍在更新Java原始碼JDK
- 集合原始碼分析[1]-Collection 原始碼分析原始碼
- Java集合原始碼剖析——ArrayList原始碼剖析Java原始碼
- 【Java集合原始碼剖析】ArrayList原始碼剖析Java原始碼
- 【Java集合原始碼剖析】Vector原始碼剖析Java原始碼
- 【Java集合原始碼剖析】HashMap原始碼剖析Java原始碼HashMap
- 【Java集合原始碼剖析】Hashtable原始碼剖析Java原始碼
- 【Java集合原始碼剖析】TreeMap原始碼剖析Java原始碼
- 【Java集合原始碼剖析】LinkedList原始碼剖析Java原始碼
- 【Java集合原始碼剖析】LinkedHashmap原始碼剖析Java原始碼HashMap
- Java LinkedList 原始碼剖析Java原始碼
- Java集合:HashMap原始碼剖析JavaHashMap原始碼
- 【Java集合原始碼剖析】Java集合框架Java原始碼框架
- Java 基礎(三)集合原始碼解析 CollectionJava原始碼
- Java集合框架原始碼剖析:ArrayDequeJava框架原始碼
- Java 集合框架 ArrayList 原始碼剖析Java框架原始碼
- jQuery原始碼剖析(三) - Callbacks 原理分析jQuery原始碼
- spark 原始碼分析之十三 -- SerializerManager剖析Spark原始碼
- Faiss原始碼剖析:類結構分析AI原始碼
- Flutter Dio原始碼分析(三)--深度剖析Flutter原始碼
- Java容器原始碼學習--ArrayList原始碼分析Java原始碼
- Java原始碼分析:Guava之不可變集合ImmutableMap的原始碼分析Java原始碼Guava
- epoll–原始碼剖析原始碼
- HashMap原始碼剖析HashMap原始碼
- Alamofire 原始碼剖析原始碼
- Handler原始碼剖析原始碼
- Kafka 原始碼剖析Kafka原始碼
- TreeMap原始碼剖析原始碼
- SDWebImage原始碼剖析(-)Web原始碼
- Boost原始碼剖析--原始碼
- 我的原始碼閱讀之路:redux原始碼剖析原始碼Redux
- java 原始碼分析 —BooleanJava原始碼Boolean
- Java 原始碼如何分析?Java原始碼
- Java:HashMap原始碼分析JavaHashMap原始碼
- Java Collections 原始碼分析Java原始碼
- Hadoop2.x原始碼-編譯剖析Hadoop原始碼編譯
- 友好 RxJava2.x 原始碼解析(三)zip 原始碼分析RxJava原始碼
- 從原始碼全面剖析 React 元件更新機制原始碼React元件