剖析網路卡繫結模式
目前網路卡繫結mode共有七種(0~6)bond0、bond1、bond2、bond3、bond4、bond5、bond6
mode=0:平衡負載模式,有自動備援,但需要”Switch”支援及設定。
mode=1:自動備援模式,其中一條線若斷線,其他線路將會自動備援。
mode=6:平衡負載模式,有自動備援,不必”Switch”支援及設定。
需要說明的是如果想做成mode 0的負載均衡,僅僅設定這裡optionsbond0 miimon=100 mode=0是不夠的,與網路卡相連的交換機必須做特殊配置(這兩個埠應該採取聚合方式),因為做bonding的這兩塊網路卡是使用同一個MAC地址.從原理分析一下(bond執行在mode0下):
mode 0下bond所繫結的網路卡的IP都被修改成相同的mac地址,如果這些網路卡都被接在同一個交換機,那麼交換機的arp表裡這個mac地址對應的埠就有多 個,那麼交換機接受到發往這個mac地址的包應該往哪個埠轉發呢?正常情況下mac地址是全球唯 一的,一個mac地址對應多個埠肯定使交換機迷惑了。所以 mode0下的bond如果連線到交換機,交換機這幾個埠應該採取聚合方式(cisco稱為 ethernetchannel,foundry稱為portgroup),因為交換機做了聚合後,聚合下的幾個埠也被捆綁成一個mac地址.我們的解 決辦法是,兩個網路卡接入不同的交換機即可。
mode6模式下無需配置交換機,因為做bonding的這兩塊網路卡是使用不同的MAC地址。
特點:傳輸資料包順序是依次傳輸(即:第1個包走eth0,下一個包就走eth1….一直迴圈下去,直到最後一個傳輸完畢),此模式提供負載平衡和容錯能力;但是我們知道如果一個連線或者會話的資料包從不同的介面發出的話,中途再經過不同的鏈路,在客戶端很有可能會出現資料包無序到達的問題,而無序到達的資料包需要重新要求被髮送,這樣網路的吞吐量就會下降
特點:只有一個裝置處於活動狀態,當一個宕掉另一個馬上由備份轉換為主裝置。mac地址是外部可見得,從外面看來,bond的MAC地址是唯 一的,以避免switch(交換機)發生混亂。此模式只提供了容錯能力;由此可見此演算法的優點是可以提供高網路連線的可用性,但是它的資源利用率較低,只有一個介面處於工作狀態,在有 N 個網路介面的情況下,資源利用率為1/N
特點:基於指定的傳輸HASH策略傳輸資料包。預設的策略是:(源MAC地址 XOR 目標MAC地址)% slave數量。其他的傳輸策略可以透過xmit_hash_policy選項指定,此模式提供負載平衡和容錯能力
特點:在每個slave介面上傳輸每個資料包,此模式提供了容錯能力
特點:建立一個聚合組,它們共享同樣的速率和雙工設定。根據802.3ad規範將多個slave工作在同一個啟用的聚合體下。外出流量的slave選舉是基於傳輸hash策略,該策略可以透過xmit_hash_policy選項從預設的XOR策略改變到其他策略。需要注意的 是,並不是所有的傳輸策略都是802.3ad適應的,尤其考慮到在802.3ad標準43.2.4章節提及的包亂序問題。不同的實現可能會有不同的適應 性。
必要條件:
條件1:ethtool支援獲取每個slave的速率和雙工設定
條件2:switch(交換機)支援IEEE802.3ad Dynamic link aggregation
條件3:大多數switch(交換機)需要經過特定配置才能支援802.3ad模式
特點:不需要任何特別的switch(交換機)支援的通道bonding。在每個slave上根據當前的負載(根據速度計算)分配外出流量。如果正在接受資料的slave出故障了,另一個slave接管失敗的slave的MAC地址。
該模式的必要條件:ethtool支援獲取每個slave的速率
特點:該模式包含了balance-tlb模式,同時加上針對IPV4流量的接收負載均衡(receiveload balance, rlb),而且不需要任何switch(交換機)的支援。接收負載均衡是透過ARP協商實現的。bonding驅動截獲本機傳送的ARP應答,並把源硬體地址改寫為bond中某個slave的唯 一硬體地址,從而使得不同的對端使用不同的硬體地址進行通訊。
來自伺服器端的接收流量也會被均衡。當本機傳送ARP請求時,bonding驅動把對端的IP資訊從ARP包中複製並儲存下來。當ARP應答從對端到達時,bonding驅動把它的硬體地址提取出來,併發起一個ARP應答給bond中的某個slave。使用ARP協商進行負載均衡的一個問題是:每次廣播 ARP請求時都會使用bond的硬體地址,因此對端學習到這個硬體地址後,接收流量將會全部流向當前的slave。這個問題可以透過給所有的對端傳送更新(ARP應答)來解決,應答中包含他們獨一無二的硬體地址,從而導致流量重新分佈。當新的slave加入到bond中時,或者某個未啟用的slave重新 啟用時,接收流量也要重新分佈。接收的負載被順序地分佈(roundrobin)在bond中最高速的slave上當某個鏈路被重新接上,或者一個新的slave加入到bond中,接收流量在所有當前啟用的slave中全部重新分配,透過使用指定的MAC地址給每個 client發起ARP應答。下面介紹的updelay引數必須被設定為某個大於等於switch(交換機)轉發延時的值,從而保證發往對端的ARP應答 不會被switch(交換機)阻截。
必要條件:
條件1:ethtool支援獲取每個slave的速率;
條件2:底層驅動支援設定某個裝置的硬體地址,從而使得總是有個slave(curr_active_slave)使用bond的硬體地址,同時保證每個 bond 中的slave都有一個唯 一的硬體地址。如果curr_active_slave出故障,它的硬體地址將會被新選出來的 curr_active_slave接管其實mod=6與mod=0的區別:mod=6,先把eth0流量佔滿,再佔eth1,….ethX;而mod=0的話,會發現2個口的流量都很穩定,基本一樣的頻寬。而mod=6,會發現第一個口流量很高,第2個口只佔了小部分流量
透過網口繫結(bond)技術,可以很容易實現網口冗餘,負載均衡,從而達到高可用高可靠的目的。前提約定:
2個物理網口分別是:eth0,eth1 繫結後的虛擬口是:bond0 伺服器IP是:10.10.10.1
第一步,配置設定檔案:
[root@woo ~]# vi /etc/sysconfig/network-scripts/ifcfg-bond0 DEVICE=bond0 BOOTPROTO=none ONBOOT=yes IPADDR=10.10.10.1 NETMASK=255.255.255.0 NETWORK=192.168.0.0 [root@woo ~]# vi /etc/sysconfig/network-scripts/ifcfg-eth0 DEVICE=eth0 BOOTPROTO=none MASTER=bond0 SLAVE=yes [root@woo ~]# vi /etc/sysconfig/network-scripts/ifcfg-eth1 DEVICE=eth1 BOOTPROTO=none MASTER=bond0 SLAVE=yes
第二步,修改modprobe相關設定檔案,並載入bonding 模組:
1.在這裡,我們直接建立一個載入bonding的專屬設定檔案/etc/modprobe.d/bonding.conf
[root@woo ~]# vi /etc/modprobe.d/bonding.conf alias bond0 bonding options bonding mode=0 miimon=200
2.載入模組(重啟系統後就不用手動再載入了)
[root@woo ~]# modprobe bonding
3.確認模組是否載入成功:
[root@woo ~]# lsmod | grep bonding bonding 100065 0
第三步,重啟一下網路,然後確認一下狀況:
[root@db01 ~]# service network restart Shutting down interface bond0: [ OK ] Shutting down loopback interface: [ OK ] Bringing up loopback interface: [ OK ] Bringing up interface bond0: [ OK ] [root@db01 ~]# cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.4.0-1 (October 7, 2008) Bonding Mode: fault-tolerance (active-backup) Primary Slave: None Currently Active Slave: eth0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 0 Down Delay (ms): 0 Slave Interface: eth0 MII Status: up Speed: 1000 Mbps Duplex: full Link Failure Count: 0 Permanent HW addr: 40:f2:e9:db:c9:c2 Slave Interface: eth1 MII Status: up Speed: 1000 Mbps Duplex: full Link Failure Count: 0 Permanent HW addr: 40:f2:e9:db:c9:c3 [root@db01 ~]# ifconfig | grep HWaddr bond0 Link encap:Ethernet HWaddr 40:F2:E9:DB:C9:C2 eth0 Link encap:Ethernet HWaddr 40:F2:E9:DB:C9:C2 eth1 Link encap:Ethernet HWaddr 40:F2:E9:DB:C9:C2
從上面的確認資訊中,我們可以看到3個重要資訊:
1.現在的bonding模式是active-backup
2.現在Active狀態的網口是eth0
3.bond0,eth1的實體地址和處於active狀態下的eth0的實體地址相同,這樣是為了避免上位交換機發生混亂。
任意拔掉一根網線,然後再訪問你的伺服器,看網路是否還是通的。
第四步,系統啟動自動繫結、增加預設閘道器:
[root@woo ~]# vi /etc/rc.d/rc.local #追加 ifenslave bond0 eth0 eth1 route add default gw 10.10.10.1
#如可上網就不用增加路由,0.1地址按環境修改.
————————————————————————
留心:前面只是2個網口繫結成一個bond0的情況,如果我們要設定多個bond口,比如物理網口eth0和eth1組成bond0,eth2和eth3組成bond1,
那麼網口設定檔案的設定方法和上面第1步講的方法相同,只是/etc/modprobe.d/bonding.conf的設定就不能像下面這樣簡單的疊加了:
alias bond0 bonding options bonding mode=1 miimon=200 alias bond1 bonding options bonding mode=1 miimon=200
正確的設定方法有2種:
第一種,你可以看到,這種方式的話,多個bond 口的模式就只能設成相同的了:
<span style=”color:#000000;”>alias bond0 bonding alias bond1 bonding options bonding max_bonds=2 miimon=200 mode=1 </span>
第二種,這種方式,不同的bond口的mode可以設成不一樣:
<span style=”color:#000000;”>alias bond0 bonding options bond0 miimon=100 mode=1 install bond1 /sbin/modprobe bonding -o bond1 miimon=200 mode=0 </span>
仔細看看上面這2種設定方法,現在如果是要設定3個,4個,甚至更多的bond口,你應該也會了吧!
miimon 監視網路連結的頻度,單位是毫秒,我們設定的是200毫秒。
max_bonds 配置的bond口個數
mode bond模式,主要有以下幾種,在一般的實際應用中,0和1用的比較多。
原文來自:
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69955379/viewspace-2980425/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 網路卡繫結七種模式模式
- 七種網路卡繫結模式詳解模式
- 七種網路卡繫結模式介紹模式
- Liunx 網路卡繫結
- 雙網路卡繫結
- Linux網路卡繫結Linux
- linux 網路卡繫結Linux
- linux繫結網路卡的幾種模式說明Linux模式
- CentOS 5.4上雙網路卡(多網路卡)繫結CentOS
- Linux(09):網路卡繫結Linux
- linux雙網路卡繫結Linux
- Oracle RAC 與 網路卡繫結Oracle
- redhat 6.3 雙網路卡繫結Redhat
- Linux 繫結雙網路卡Linux
- Linux 雙網路卡繫結Linux
- Redhat AS 5.4 雙網路卡繫結Redhat
- centos 6.5 雙網路卡繫結CentOS
- linux rac 網路卡繫結Linux
- 【轉】redhat 雙網路卡繫結Redhat
- liunx下雙網路卡繫結
- 深度分析Linux下雙網路卡繫結七種模式 多網路卡的7種bond模式原理Linux模式
- linux6.5 網路卡繫結Linux
- RHEL6 雙網路卡繫結
- 關於AIX雙網路卡繫結AI
- linux redhat 雙網路卡繫結LinuxRedhat
- NIC bonding 雙網路卡繫結
- 【LINUX】Linux網路卡繫結探析Linux
- Linux 雙網路卡繫結實踐Linux
- 繫結2網路卡為bond0
- 虛擬機器雙網路卡繫結虛擬機
- linux6.5 雙網路卡繫結Linux
- Linux 雙網路卡繫結技術Linux
- Redhat Linux網路卡配置與繫結RedhatLinux
- RedHat Linux 5 雙網路卡繫結RedhatLinux
- Solaris下網路卡繫結多個IP
- RHEL5.6 多網路卡bond 繫結
- Oracle 11gR2 RAC 單網路卡轉雙網路卡繫結配置Oracle
- Linux單網路卡繫結多IP與多網路卡共用單IPLinux