tensorflow入門
tensorflow入門
更多幹貨
tensorflow基本語法
#opencv tensorflow
#類比 語法 api 原理
#基礎資料型別 運算子 流程 字典 陣列
import tensorflow as tf
#常量
data1 = tf.constant(2,dtype=tf.int32)
#變數
data2 = tf.Variable(10,name='var')
print(data1)
print(data2)
'''
sess = tf.Session()
print(sess.run(data1))
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(data2))
sess.close()
# 本質 tf = tensor + 計算圖
# tensor 資料
# op
# graphs 資料操作
# session
'''
init = tf.global_variables_initializer()
sess = tf.Session()
with sess:
sess.run(init)
print(sess.run(data2))
Tensor("Const_2:0", shape=(), dtype=int32)
<tf.Variable 'var_2:0' shape=() dtype=int32_ref>
10
四則運算
import tensorflow as tf
data1 = tf.constant(6)
data2 = tf.constant(2)
dataAdd = tf.add(data1,data2)
dataMul = tf.multiply(data1,data2)
dataSub = tf.subtract(data1,data2)
dataDiv = tf.divide(data1,data2)
with tf.Session() as sess:
print(sess.run(dataAdd))
print(sess.run(dataMul))
print(sess.run(dataSub))
print(sess.run(dataDiv))
print('end!')
8
12
4
3.0
end!
import tensorflow as tf
data1 = tf.constant(6)
data2 = tf.Variable(2)
dataAdd = tf.add(data1,data2)
dataCopy = tf.assign(data2,dataAdd)# dataAdd ->data2
dataMul = tf.multiply(data1,data2)
dataSub = tf.subtract(data1,data2)
dataDiv = tf.divide(data1,data2)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(sess.run(dataAdd))
print(sess.run(dataMul))
print(sess.run(dataSub))
print(sess.run(dataDiv))
print('sess.run(dataCopy)',sess.run(dataCopy))#8->data2
print('dataCopy.eval()',dataCopy.eval())#8+6->14->data = 14
print('tf.get_default_session()',tf.get_default_session().run(dataCopy))
print('end!')
8
12
4
3.0
sess.run(dataCopy) 8
dataCopy.eval() 14
tf.get_default_session() 20
end!
矩陣基礎
#placehold
import tensorflow as tf
data1 = tf.placeholder(tf.float32)
data2 = tf.placeholder(tf.float32)
dataAdd = tf.add(data1,data2)
with tf.Session() as sess:
print(sess.run(dataAdd,feed_dict={data1:6,data2:2}))
# 1 dataAdd 2 data (feed_dict = {1:6,2:2})
print('end!')
8.0
end!
#類比 陣列 M行N列 [] 內部[] [裡面 列資料] [] 中括號整體 行數
#[[6,6]] [[6,6]]
import tensorflow as tf
data1 = tf.constant([[6,6]])
data2 = tf.constant([[2],
[2]])
data3 = tf.constant([[3,3]])
data4 = tf.constant([[1,2],
[3,4],
[5,6]])
print(data4.shape)# 維度
with tf.Session() as sess:
print(sess.run(data4)) #列印整體
print(sess.run(data4[0]))# 列印某一行
print(sess.run(data4[:,0]))#MN 列
print(sess.run(data4[0,1]))# 1 1 MN = 0 32 = M012 N01
(3, 2)
[[1 2]
[3 4]
[5 6]]
[1 2]
[1 3 5]
2
矩陣運算
import tensorflow as tf
data1 = tf.constant([[6,6]])
data2 = tf.constant([[2],
[2]])
data3 = tf.constant([[3,3]])
data4 = tf.constant([[1,2],
[3,4],
[5,6]])
matMul = tf.matmul(data1,data2)
matMul2 = tf.multiply(data1,data2)
matAdd = tf.add(data1,data3)
with tf.Session() as sess:
print(sess.run(matMul))#1 維 M=1 N2. 1X2(MK) 2X1(KN) = 1
print(sess.run(matAdd))#1行2列
print(sess.run(matMul2))# 1x2 2x1 = 2x2
print(sess.run([matMul,matAdd]))
[[24]]
[[9 9]]
[[12 12]
[12 12]]
[array([[24]]), array([[9, 9]])]
import tensorflow as tf
mat0 = tf.constant([[0,0,0],[0,0,0]])
mat1 = tf.zeros([2,3])
mat2 = tf.ones([3,2])
mat3 = tf.fill([2,3],15)
with tf.Session() as sess:
#print(sess.run(mat0))
#print(sess.run(mat1))
#print(sess.run(mat2))
print(sess.run(mat3))
[[15 15 15]
[15 15 15]]
import tensorflow as tf
mat1 = tf.constant([[2],[3],[4]])
mat2 = tf.zeros_like(mat1)
mat3 = tf.linspace(0.0,2.0,11)
mat4 = tf.random_uniform([2,3],-1,2)
with tf.Session() as sess:
#print(sess.run(mat1))
#print(sess.run(mat2))
#print(sess.run(mat3))
print(sess.run(mat4))
[[ 1.01364231 0.03153861 -0.35802007]
[ 1.68033934 1.30461025 -0.84316409]]
模組numpy的使用
#CURD
import numpy as np
data1 = np.array([1,2,3,4,5])
print(data1)
data2 = np.array([[1,2],
[3,4]])
print(data2)
#維度
print(data1.shape,data2.shape)
# zero ones
print(np.zeros([2,3]),np.ones([2,2]))
# 改查
data2[1,0] = 5
print(data2)
print(data2[1,1])
# 基本運算
data3 = np.ones([2,3])
print(data3*2)#對應相乘
print(data3/3)
print(data3+2)
# 矩陣+*
data4 = np.array([[1,2,3],[4,5,6]])
print(data3+data4)
print(data3*data4)
相關文章
- TensorFlow入門文章
- TensorFlow 入門 上(自用)
- TensorFlow 入門 下(自用)
- TensorFlow入門 - 變數(Variables)變數
- TensorFlow 入門(MNIST資料集)
- Tensorflow 2.x入門教程
- 深度學習:TensorFlow入門實戰深度學習
- [譯] IBM 工程師的 TensorFlow 入門指北IBM工程師
- 面向初學者的快速入門tensorflow
- TensorFlow入門簡介,新手請看這裡!
- Java / JavaScript在TensorFlow中的入門使用指南JavaScript
- TensorFlow初入
- 入門系列之在Ubuntu 16.04上安裝和使用TensorFlowUbuntu
- 用一個小例子教你入門機器學習框架TensorFlow機器學習框架
- 行業專家分享:深度學習筆記之Tensorflow入門!行業深度學習筆記
- 【6】TensorFlow光速入門-python模型轉換為tfjs模型並使用Python模型JS
- TensorFlow快速入門與實戰-彭靖田-極客時間
- TensorFlow.NET機器學習入門【2】線性迴歸機器學習
- Python 載入 TensorFlow 模型Python模型
- Python深度學習入門之mnist-inception(Tensorflow2.0實現)Python深度學習
- 入門 | Tensorflow實戰講解神經網路搭建詳細過程神經網路
- TensorFlow.NET機器學習入門【8】採用GPU進行學習機器學習GPU
- 入門入門入門 MySQL命名行MySql
- 從零基礎入門Tensorflow2.0 ----九、44.3 keras模型轉換成savedmodelKeras模型
- TensorFlow 載入多個模型的方法模型
- mnist手寫數字識別——深度學習入門專案(tensorflow+keras+Sequential模型)深度學習Keras模型
- TensorFlow.NET機器學習入門【1】開發環境與型別簡介機器學習開發環境型別
- 何入CTF的“門”?——所謂入門就是入門
- 如何入CTF的“門”?——所謂入門就是入門
- scala 從入門到入門+
- makefile從入門到入門
- gRPC(二)入門:Protobuf入門RPC
- TensorFlow 簡介:機器學習技術使用入門 丨 Google 開發者大會 2018機器學習Go
- 《深度學習之TensorFlow:入門、原理與進階實戰》PDF+原始碼+李金洪深度學習原始碼
- TensorFlow入門教程(26)車牌識別之文字檢測模型EAST程式碼實現(二)模型AST
- Tensorflow SavedModel模型的儲存與載入模型
- tensorflow載入資料的三種方式
- tensorflow模型持久化儲存和載入模型持久化