DCGAN

Candy_GL發表於2018-07-20

轉自:https://blog.csdn.net/liuxiao214/article/details/74502975

首先是各種參考部落格、連結等,表示感謝。

1、參考部落格1:地址

——以下,開始正文。

2017/12/12 更新 解決訓練不收斂的問題。

更新在最後面部分。


1、DCGAN的簡單總結

穩定的深度卷積GAN 架構指南:

  • 所有的pooling層使用步幅卷積(判別網路)和微步幅度卷積(生成網路)進行替換。

  • 在生成網路和判別網路上使用批處理規範化。

  • 對於更深的架構移除全連線隱藏層。

  • 在生成網路的所有層上使用RelU啟用函式,除了輸出層使用Tanh啟用函式。

  • 在判別網路的所有層上使用LeakyReLU啟用函式。

這裡寫圖片描述

圖: LSUN 場景模型中使用的DCGAN生成網路。一個100維度的均勻分佈z對映到一個有很多特徵對映的小空間範圍卷積。一連串的四個微步幅卷積(在最近的一些論文中它們錯誤地稱為去卷積),將高層表徵轉換為64*64畫素的影象。明顯,沒有使用全連線層和池化層。

2、DCGAN的實現

DCGAN原文作者是生成了臥室圖片,這裡參照前面寫的參考連結中,來生成動漫人物頭像。生成效果如下:

暫且先不放,因為還沒開始做。

2.1 蒐集原始資料集

首先是需要獲取大量的動漫影象,這個可以利用爬蟲爬取一個動漫網站:konachan.net的圖片。爬蟲的程式碼如下所示:

import requests  # http lib
from bs4 import BeautifulSoup  # climb lib
import os # operation system
import traceback # trace deviance

def download(url,filename):
    if os.path.exists(filename):
        print('file exists!')
        return
    try:
        r = requests.get(url,stream=True,timeout=60)
        r.raise_for_status()
        with open(filename,'wb') as f:
            for chunk in r.iter_content(chunk_size=1024):
                if chunk: # filter out keep-alove new chunks
                    f.write(chunk)
                    f.flush()
        return filename
    except KeyboardInterrupt:
        if os.path.exists(filename):
            os.remove(filename)
        return KeyboardInterrupt
    except Exception:
        traceback.print_exc()
        if os.path.exists(filename):
            os.remove(filename)

if os.path.exists('imgs') is False:
    os.makedirs('imgs')

start = 1
end = 8000
for i in range(start, end+1):
    url = 'http://konachan.net/post?page=%d&tags=' % i
    html = requests.get(url).text # gain the web's information
    soup =  BeautifulSoup(html,'html.parser') # doc's string and jie xi qi
    for img in soup.find_all('img',class_="preview"):# 遍歷所有preview類,找到img標籤
        target_url = 'http:' + img['src']
        filename = os.path.join('imgs',target_url.split('/')[-1])
        download(target_url,filename)
    print('%d / %d' % (i,end))    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

目標是獲取1萬張影象,因為自己是在CPU上跑的,而且記憶體太小,太多影象根本訓練不起來,就先少一點訓練,看看效果。

擷取部分影象如下所示:

這裡寫圖片描述

現在已經有了基本的影象了,但我們的目標是生成動漫頭像,不需要整張影象,而且其他的資訊會干擾到訓練,所以需要進行人臉檢測擷取人臉影象。

2.2 人臉檢測擷取人臉

通過基於opencv的人臉檢測分類器,參考於lbpcascade_animeface

首先,要使用這個分類器要先進行下載:

wget https://raw.githubusercontent.com/nagadomi/lbpcascade_animeface/master/lbpcascade_animeface.xml
  • 1

下載完成後,執行以下程式碼對影象進行人臉擷取。

import cv2
import sys
import os.path
from glob import glob

def detect(filename,cascade_file="lbpcascade_animeface.xml"):
    if not os.path.isfile(cascade_file):
        raise RuntimeError("%s: not found" % cascade_file)

    cascade = cv2.CascadeClassifier(cascade_file)
    image = cv2.imread(filename)
    gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
    gray = cv2.equalizeHist(gray)

    faces = cascade.detectMultiScale(
        gray,
        # detector options
        scaleFactor = 1.1,
        minNeighbors = 5,
        minSize = (48,48)
    )

    for i,(x,y,w,h) in enumerate(faces):
        face = image[y: y+h, x:x+w, :]
        face = cv2.resize(face,(96,96))
        save_filename = '%s.jpg' % (os.path.basename(filename).split('.')[0])
        cv2.imwrite("faces/"+sace_filename,face)

if __name__ == '__main__':
    if os.path.exists('faces') is False:
        os.makedirs('faces')
    file_list = glob('imgs/*.jpg')
    for filename in file_list:
        detect(filename)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

處理後的影象如下所示:

這裡寫圖片描述

2.3 原始碼解析

參照於DCGAN-tensorflow

總共獲取11053張影象,人臉檢測後得到3533張。

一共有4個檔案,分別是main.py、model.py、ops.py、utils.py。

2.3.1 mian.py

原始碼(98行):

import os
import scipy.misc # 
import numpy as np

from model import DCGAN
from utils import pp, visualize, to_json, show_all_variables

import tensorflow as tf

flags = tf.app.flags
flags.DEFINE_integer("epoch", 25, "Epoch to train [25]")
flags.DEFINE_float("learning_rate", 0.0002, "Learning rate of for adam [0.0002]")
flags.DEFINE_float("beta1", 0.5, "Momentum term of adam [0.5]")
flags.DEFINE_integer("train_size", np.inf, "The size of train images [np.inf]")
flags.DEFINE_integer("batch_size", 64, "The size of batch images [64]")
flags.DEFINE_integer("input_height", 108, "The size of image to use (will be center cropped). [108]")
flags.DEFINE_integer("input_width", None, "The size of image to use (will be center cropped). If None, same value as input_height [None]")
flags.DEFINE_integer("output_height", 64, "The size of the output images to produce [64]")
flags.DEFINE_integer("output_width", None, "The size of the output images to produce. If None, same value as output_height [None]")
flags.DEFINE_string("dataset", "celebA", "The name of dataset [celebA, mnist, lsun]")
flags.DEFINE_string("input_fname_pattern", "*.jpg", "Glob pattern of filename of input images [*]")
flags.DEFINE_string("checkpoint_dir", "checkpoint", "Directory name to save the checkpoints [checkpoint]")
flags.DEFINE_string("sample_dir", "samples", "Directory name to save the image samples [samples]")
flags.DEFINE_boolean("train", False, "True for training, False for testing [False]")
flags.DEFINE_boolean("crop", False, "True for training, False for testing [False]")
flags.DEFINE_boolean("visualize", False, "True for visualizing, False for nothing [False]")
FLAGS = flags.FLAGS

def main(_):
  pp.pprint(flags.FLAGS.__flags)

  if FLAGS.input_width is None:
    FLAGS.input_width = FLAGS.input_height
  if FLAGS.output_width is None:
    FLAGS.output_width = FLAGS.output_height

  if not os.path.exists(FLAGS.checkpoint_dir):
    os.makedirs(FLAGS.checkpoint_dir)
  if not os.path.exists(FLAGS.sample_dir):
    os.makedirs(FLAGS.sample_dir)

  #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
  run_config = tf.ConfigProto()
  run_config.gpu_options.allow_growth=True

  with tf.Session(config=run_config) as sess:
    if FLAGS.dataset == 'mnist':
      dcgan = DCGAN(
          sess,
          input_width=FLAGS.input_width,
          input_height=FLAGS.input_height,
          output_width=FLAGS.output_width,
          output_height=FLAGS.output_height,
          batch_size=FLAGS.batch_size,
          sample_num=FLAGS.batch_size,
          y_dim=10,
          dataset_name=FLAGS.dataset,
          input_fname_pattern=FLAGS.input_fname_pattern,
          crop=FLAGS.crop,
          checkpoint_dir=FLAGS.checkpoint_dir,
          sample_dir=FLAGS.sample_dir)
    else:
      dcgan = DCGAN(
          sess,
          input_width=FLAGS.input_width,
          input_height=FLAGS.input_height,
          output_width=FLAGS.output_width,
          output_height=FLAGS.output_height,
          batch_size=FLAGS.batch_size,
          sample_num=FLAGS.batch_size,
          dataset_name=FLAGS.dataset,
          input_fname_pattern=FLAGS.input_fname_pattern,
          crop=FLAGS.crop,
          checkpoint_dir=FLAGS.checkpoint_dir,
          sample_dir=FLAGS.sample_dir)

    show_all_variables()

    if FLAGS.train:
      dcgan.train(FLAGS)
    else:
      if not dcgan.load(FLAGS.checkpoint_dir)[0]:
        raise Exception("[!] Train a model first, then run test mode")


    # to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
    #                 [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
    #                 [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
    #                 [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
    #                 [dcgan.h4_w, dcgan.h4_b, None])

    # Below is codes for visualization
    OPTION = 1
    visualize(sess, dcgan, FLAGS, OPTION)

if __name__ == '__main__':
  tf.app.run()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98

該檔案呼叫了model.py檔案和utils.py檔案。

step0:執行main函式之前首先進行flags的解析,TensorFlow底層使用了python-gflags專案,然後封裝成tf.app.flags介面,也就是說TensorFlow通過設定flags來傳遞tf.app.run()所需要的引數,我們可以直接在程式執行前初始化flags,也可以在執行程式的時候設定命令列引數來達到傳參的目的。

這裡主要設定了:

  • epoch:迭代次數
  • learning_rate:學習速率,預設是0.002
  • beta1
  • train_size
  • batch_size:每次迭代的影象數量
  • input_height:需要指定輸入影象的高
  • input_width:需要指定輸入影象的寬
  • output_height:需要指定輸出影象的高
  • output_width:需要指定輸出影象的寬
  • dataset:需要指定處理哪個資料集
  • input_fname_pattern
  • checkpoint_dir
  • sample_dir
  • train:True for training, False for testing
  • crop:True for training, False for testing
  • visualize

step1:首先是列印引數資料,然後判斷輸入影象的輸出影象的寬是否指定,如果沒有指定,則等於其影象的高。

step2:然後判斷checkpoint和sample的檔案是否存在,不存在則建立。

step3:然後是設定session引數。tf.ConfigProto一般用在建立session的時候,用來對session進行引數配置,詳細內容可見這篇部落格

#tf.ConfigProto()的引數:
log_device_placement=True : 是否列印裝置分配日誌
allow_soft_placement=True : 如果你指定的裝置不存在,允許TF自動分配裝置
tf.ConfigProto(log_device_placement=True,allow_soft_placement=True)

控制GPU資源使用率:
#allow growth
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config, ...)
# 使用allow_growth option,剛一開始分配少量的GPU容量,然後按需慢慢的增加,由於不會釋放記憶體,所以會導致碎片
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

step4:執行session,首先判斷處理的是哪個資料集,然後對應使用不同引數的DCGAN類,這個類會在model.py檔案中定義。

step5:show所有與訓練相關的變數。

step6:判斷是訓練還是測試,如果是訓練,則進行訓練;如果不是,判斷是否有訓練好的model,然後進行測試,如果沒有先訓練,則會提示“[!] Train a model first, then run test mode”。

step7:最後進行視覺化,visualize(sess, dcgan, FLAGS, OPTION)。

main.py主要是呼叫前面定義好的模型、影象處理方法,來進行訓練測試,程式的入口。

2.3.2 utils.py

原始碼(250行):

"""
Some codes from https://github.com/Newmu/dcgan_code
"""
from __future__ import division
import math
import json
import random
import pprint # print data_struct
import scipy.misc
import numpy as np
from time import gmtime, strftime
from six.moves import xrange

import tensorflow as tf
import tensorflow.contrib.slim as slim

pp = pprint.PrettyPrinter()

get_stddev = lambda x, k_h, k_w: 1/math.sqrt(k_w*k_h*x.get_shape()[-1])

def show_all_variables():
  model_vars = tf.trainable_variables()
  slim.model_analyzer.analyze_vars(model_vars, print_info=True)

def get_image(image_path, input_height, input_width,
              resize_height=64, resize_width=64,
              crop=True, grayscale=False):
  image = imread(image_path, grayscale)
  return transform(image, input_height, input_width,
                   resize_height, resize_width, crop)

def save_images(images, size, image_path):
  return imsave(inverse_transform(images), size, image_path)

def imread(path, grayscale = False):
  if (grayscale):
    return scipy.misc.imread(path, flatten = True).astype(np.float)
  else:
    return scipy.misc.imread(path).astype(np.float)

def merge_images(images, size):
  return inverse_transform(images)

def merge(images, size):
  h, w = images.shape[1], images.shape[2]
  if (images.shape[3] in (3,4)):
    c = images.shape[3]
    img = np.zeros((h * size[0], w * size[1], c))
    for idx, image in enumerate(images):
      i = idx % size[1]
      j = idx // size[1]
      img[j * h:j * h + h, i * w:i * w + w, :] = image
    return img
  elif images.shape[3]==1:
    img = np.zeros((h * size[0], w * size[1]))
    for idx, image in enumerate(images):
      i = idx % size[1]
      j = idx // size[1]
      img[j * h:j * h + h, i * w:i * w + w] = image[:,:,0]
    return img
  else:
    raise ValueError('in merge(images,size) images parameter '
                     'must have dimensions: HxW or HxWx3 or HxWx4')

def imsave(images, size, path):
  image = np.squeeze(merge(images, size))
  return scipy.misc.imsave(path, image)

def center_crop(x, crop_h, crop_w,
                resize_h=64, resize_w=64):
  if crop_w is None:
    crop_w = crop_h
  h, w = x.shape[:2]
  j = int(round((h - crop_h)/2.))
  i = int(round((w - crop_w)/2.))
  return scipy.misc.imresize(
      x[j:j+crop_h, i:i+crop_w], [resize_h, resize_w])

def transform(image, input_height, input_width, 
              resize_height=64, resize_width=64, crop=True):
  if crop:
    cropped_image = center_crop(
      image, input_height, input_width, 
      resize_height, resize_width)
  else:
    cropped_image = scipy.misc.imresize(image, [resize_height, resize_width])
  return np.array(cropped_image)/127.5 - 1.

def inverse_transform(images):
  return (images+1.)/2.

def to_json(output_path, *layers):
  with open(output_path, "w") as layer_f:
    lines = ""
    for w, b, bn in layers:
      layer_idx = w.name.split('/')[0].split('h')[1]

      B = b.eval()

      if "lin/" in w.name:
        W = w.eval()
        depth = W.shape[1]
      else:
        W = np.rollaxis(w.eval(), 2, 0)
        depth = W.shape[0]

      biases = {"sy": 1, "sx": 1, "depth": depth, "w": ['%.2f' % elem for elem in list(B)]}
      if bn != None:
        gamma = bn.gamma.eval()
        beta = bn.beta.eval()

        gamma = {"sy": 1, "sx": 1, "depth": depth, "w": ['%.2f' % elem for elem in list(gamma)]}
        beta = {"sy": 1, "sx": 1, "depth": depth, "w": ['%.2f' % elem for elem in list(beta)]}
      else:
        gamma = {"sy": 1, "sx": 1, "depth": 0, "w": []}
        beta = {"sy": 1, "sx": 1, "depth": 0, "w": []}

      if "lin/" in w.name:
        fs = []
        for w in W.T:
          fs.append({"sy": 1, "sx": 1, "depth": W.shape[0], "w": ['%.2f' % elem for elem in list(w)]})

        lines += """
          var layer_%s = {
            "layer_type": "fc", 
            "sy": 1, "sx": 1, 
            "out_sx": 1, "out_sy": 1,
            "stride": 1, "pad": 0,
            "out_depth": %s, "in_depth": %s,
            "biases": %s,
            "gamma": %s,
            "beta": %s,
            "filters": %s
          };""" % (layer_idx.split('_')[0], W.shape[1], W.shape[0], biases, gamma, beta, fs)
      else:
        fs = []
        for w_ in W:
          fs.append({"sy": 5, "sx": 5, "depth": W.shape[3], "w": ['%.2f' % elem for elem in list(w_.flatten())]})

        lines += """
          var layer_%s = {
            "layer_type": "deconv", 
            "sy": 5, "sx": 5,
            "out_sx": %s, "out_sy": %s,
            "stride": 2, "pad": 1,
            "out_depth": %s, "in_depth": %s,
            "biases": %s,
            "gamma": %s,
            "beta": %s,
            "filters": %s
          };""" % (layer_idx, 2**(int(layer_idx)+2), 2**(int(layer_idx)+2),
               W.shape[0], W.shape[3], biases, gamma, beta, fs)
    layer_f.write(" ".join(lines.replace("'","").split()))

def make_gif(images, fname, duration=2, true_image=False):
  import moviepy.editor as mpy

  def make_frame(t):
    try:
      x = images[int(len(images)/duration*t)]
    except:
      x = images[-1]

    if true_image:
      return x.astype(np.uint8)
    else:
      return ((x+1)/2*255).astype(np.uint8)

  clip = mpy.VideoClip(make_frame, duration=duration)
  clip.write_gif(fname, fps = len(images) / duration)

def visualize(sess, dcgan, config, option):
  image_frame_dim = int(math.ceil(config.batch_size**.5))
  if option == 0:
    z_sample = np.random.uniform(-0.5, 0.5, size=(config.batch_size, dcgan.z_dim))
    samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample})
    save_images(samples, [image_frame_dim, image_frame_dim], './samples/test_%s.png' % strftime("%Y%m%d%H%M%S", gmtime()))
  elif option == 1:
    values = np.arange(0, 1, 1./config.batch_size)
    for idx in xrange(100):
      print(" [*] %d" % idx)
      z_sample = np.zeros([config.batch_size, dcgan.z_dim])
      for kdx, z in enumerate(z_sample):
        z[idx] = values[kdx]

      if config.dataset == "mnist":
        y = np.random.choice(10, config.batch_size)
        y_one_hot = np.zeros((config.batch_size, 10))
        y_one_hot[np.arange(config.batch_size), y] = 1

        samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample, dcgan.y: y_one_hot})
      else:
        samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample})

      save_images(samples, [image_frame_dim, image_frame_dim], './samples/test_arange_%s.png' % (idx))
  elif option == 2:
    values = np.arange(0, 1, 1./config.batch_size)
    for idx in [random.randint(0, 99) for _ in xrange(100)]:
      print(" [*] %d" % idx)
      z = np.random.uniform(-0.2, 0.2, size=(dcgan.z_dim))
      z_sample = np.tile(z, (config.batch_size, 1))
      #z_sample = np.zeros([config.batch_size, dcgan.z_dim])
      for kdx, z in enumerate(z_sample):
        z[idx] = values[kdx]

      if config.dataset == "mnist":
        y = np.random.choice(10, config.batch_size)
        y_one_hot = np.zeros((config.batch_size, 10))
        y_one_hot[np.arange(config.batch_size), y] = 1

        samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample, dcgan.y: y_one_hot})
      else:
        samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample})

      try:
        make_gif(samples, './samples/test_gif_%s.gif' % (idx))
      except:
        save_images(samples, [image_frame_dim, image_frame_dim], './samples/test_%s.png' % strftime("%Y%m%d%H%M%S", gmtime()))
  elif option == 3:
    values = np.arange(0, 1, 1./config.batch_size)
    for idx in xrange(100):
      print(" [*] %d" % idx)
      z_sample = np.zeros([config.batch_size, dcgan.z_dim])
      for kdx, z in enumerate(z_sample):
        z[idx] = values[kdx]

      samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample})
      make_gif(samples, './samples/test_gif_%s.gif' % (idx))
  elif option == 4:
    image_set = []
    values = np.arange(0, 1, 1./config.batch_size)

    for idx in xrange(100):
      print(" [*] %d" % idx)
      z_sample = np.zeros([config.batch_size, dcgan.z_dim])
      for kdx, z in enumerate(z_sample): z[idx] = values[kdx]

      image_set.append(sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample}))
      make_gif(image_set[-1], './samples/test_gif_%s.gif' % (idx))

    new_image_set = [merge(np.array([images[idx] for images in image_set]), [10, 10]) \
        for idx in range(64) + range(63, -1, -1)]
    make_gif(new_image_set, './samples/test_gif_merged.gif', duration=8)


def image_manifold_size(num_images):
  manifold_h = int(np.floor(np.sqrt(num_images)))
  manifold_w = int(np.ceil(np.sqrt(num_images)))
  assert manifold_h * manifold_w == num_images
  return manifold_h, manifold_w
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251

這份程式碼主要是定義了各種對影象處理的函式,相當於其他3個檔案的標頭檔案。

step0:首先定義了一個pp = pprint.PrettyPrinter(),以方便列印資料結構資訊,詳細資訊可見這篇部落格

step1:定義了get_stddev函式,是三個引數乘積後開平方的倒數,應該是為了隨機化用。

step2:定義show_all_variables()函式。首先,tf.trainable_variables返回的是需要訓練的變數列表;然後用tensorflow.contrib.slim中的model_analyzer.analyze_vars列印出所有與訓練相關的變數資訊。用法如下:

-程式碼:

import tensorflow as tf
import tensorflow.contrib.slim as slim

x1=tf.Variable(tf.constant(1,shape=[1],dtype=tf.float32),name='x11')
x2=tf.Variable(tf.constant(2,shape=[1],dtype=tf.float32),name='x22')
m=tf.train.ExponentialMovingAverage(0.99,5)
v=tf.trainable_variables()
for i in v:
    print 233
    print i

print 23333333   
slim.model_analyzer.analyze_vars(v,print_info=True)
print 23333333
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

-結果截圖如下:

這裡寫圖片描述


注:從step3-step11,都是在定義一些影象處理的函式,它們之間相互呼叫。

step3:定義get_image(image_path,input_height,input_width,resize_height=64, resize_width=64,crop=True, grayscale=False)函式。首先根據影象路徑引數讀取路徑,根據灰度化引數選擇是否進行灰度化。然後對影象參照輸入的引數進行裁剪。

step4:定義save_images(images,size,image_path)函式。呼叫imsave(inverse_transform(images), size, image_path)函式並返回新影象。

step5:定義imread(path, grayscale = False)函式。呼叫cipy.misc.imread()函式,判斷grayscale引數是否進行範圍灰度化,並進行型別轉換為np.float。

step6:定義merge_images(images, size)函式。呼叫inverse_transform(images)函式,並返回新影象。

step7:定義merge(images, size)函式。首先獲取image的高和寬。然後判斷image是RGB圖還是灰度圖,以分別進行不同的處理。如果通道數是3或4,則對每一批次(如,batch_size=64)的所有影象,用0初始化一張原始影象放大8*8的影象,然後迴圈,依次將所有影象填入大影象,並且返回這張大影象。如果通道數是1,也是一樣,只不過填入影象的時候只填一個通道的資訊。如果不是上述兩種情況,則丟擲錯誤提示。

step8:定義imsave(images, size, path)函式。首先將merge()函式返回的影象,用 np.squeeze()函式移除長度為1的軸。然後利用scipy.misc.imsave()函式將新影象儲存到指定路徑中。

step9:定義center_crop(x, crop_h, crop_w,resize_h=64, resize_w=64)函式。對影象的H和W與crop的H和W相減,得到取整的值,根據這個值作為下標依據來scipy.misc.resize影象。

step10:定義transform(image, input_height, input_width,resize_height=64, resize_width=64, crop=True)函式。對輸入的影象進行裁剪,如果crop為true,則使用center_crop()函式,對影象的H和W與crop的H和W相減,得到取整的值,根據這個值作為下標依據來scipy.misc.resize影象;否則不對影象進行其他操作,直接scipy.misc.resize為64*64大小的影象。最後返回影象。

step11:定義inverse_transform(images)函式。對影象進行翻轉後返回新影象。

總結下來,這幾個函式相互呼叫,主要實現了3個影象操作功能:獲取影象get_image(),負責讀取影象,返回影象裁剪後的新影象;儲存影象save_images(),負責將一個batch中所有影象儲存為一張大影象並返回;影象翻轉merge_images(),負責不知道怎麼得翻轉的,返回新影象。它們之間的相互關係如下圖所示。

這裡寫圖片描述

step12:定義to_json(output_path, *layers)函式。應該是獲取每一層的權值、偏置值什麼的,但貌似程式碼中沒有用到這個函式,所以先不管,後面用到再說。

step13:定義make_gif(images, fname, duration=2, true_image=False)函式。利用moviepy.editor模組來製作動圖,為了視覺化用的。函式又定義了一個函式make_frame(t),首先根據影象集的長度和持續的時間做一個除法,然後返回每幀影象。最後視訊修剪並製作成GIF動畫。

step14:定義visualize(sess, dcgan, config, option)函式。分為0、1、2、3、4種option。如果option=0,則之間顯示生產的樣本‘如果option=1,根據不同資料集不一樣的處理,並利用前面的save_images()函式將sample儲存下來;等等。本次在main.py中選用option=1。

step15:定義image_manifold_size(num_images)函式。首先獲取影象數量的開平方後向下取整的h和向上取整的w,然後設定一個assert斷言,如果h*w與影象數量相等,則返回h和w,否則斷言錯誤提示。

這就是全部utils.py全部內容,主要負責影象的一些基本操作,獲取影象、儲存影象、影象翻轉,和利用moviepy模組視覺化訓練過程。

2.3.3 ops.py

原始碼(105行):

import math
import numpy as np 
import tensorflow as tf

from tensorflow.python.framework import ops

from utils import *

try:
  image_summary = tf.image_summary
  scalar_summary = tf.scalar_summary
  histogram_summary = tf.histogram_summary
  merge_summary = tf.merge_summary
  SummaryWriter = tf.train.SummaryWriter
except:
  image_summary = tf.summary.image
  scalar_summary = tf.summary.scalar
  histogram_summary = tf.summary.histogram
  merge_summary = tf.summary.merge
  SummaryWriter = tf.summary.FileWriter

if "concat_v2" in dir(tf):
  def concat(tensors, axis, *args, **kwargs):
    return tf.concat_v2(tensors, axis, *args, **kwargs)
else:
  def concat(tensors, axis, *args, **kwargs):
    return tf.concat(tensors, axis, *args, **kwargs)

class batch_norm(object):
  def __init__(self, epsilon=1e-5, momentum = 0.9, name="batch_norm"):
    with tf.variable_scope(name):
      self.epsilon  = epsilon
      self.momentum = momentum
      self.name = name

  def __call__(self, x, train=True):
    return tf.contrib.layers.batch_norm(x,
                      decay=self.momentum, 
                      updates_collections=None,
                      epsilon=self.epsilon,
                      scale=True,
                      is_training=train,
                      scope=self.name)

def conv_cond_concat(x, y):
  """Concatenate conditioning vector on feature map axis."""
  x_shapes = x.get_shape()
  y_shapes = y.get_shape()
  return concat([
    x, y*tf.ones([x_shapes[0], x_shapes[1], x_shapes[2], y_shapes[3]])], 3)

def conv2d(input_, output_dim, 
       k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
       name="conv2d"):
  with tf.variable_scope(name):
    w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim],
              initializer=tf.truncated_normal_initializer(stddev=stddev))
    conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME')

    biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
    conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape())

    return conv

def deconv2d(input_, output_shape,
       k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
       name="deconv2d", with_w=False):
  with tf.variable_scope(name):
    # filter : [height, width, output_channels, in_channels]
    w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]],
              initializer=tf.random_normal_initializer(stddev=stddev))

    try:
      deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape,
                strides=[1, d_h, d_w, 1])

    # Support for verisons of TensorFlow before 0.7.0
    except AttributeError:
      deconv = tf.nn.deconv2d(input_, w, output_shape=output_shape,
                strides=[1, d_h, d_w, 1])

    biases = tf.get_variable('biases', [output_shape[-1]], initializer=tf.constant_initializer(0.0))
    deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())

    if with_w:
      return deconv, w, biases
    else:
      return deconv

def lrelu(x, leak=0.2, name="lrelu"):
  return tf.maximum(x, leak*x)

def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
  shape = input_.get_shape().as_list()

  with tf.variable_scope(scope or "Linear"):
    matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
                 tf.random_normal_initializer(stddev=stddev))
    bias = tf.get_variable("bias", [output_size],
      initializer=tf.constant_initializer(bias_start))
    if with_w:
      return tf.matmul(input_, matrix) + bias, matrix, bias
    else:
      return tf.matmul(input_, matrix) + bias
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105

該檔案呼叫了utils.py檔案。

step0:首先匯入tensorflow.python.framework模組,包含了tensorflow中圖、張量等的定義操作。

step1:然後是一個try…except部分,定義了一堆變數:image_summary 、scalar_summary、histogram_summary、merge_summary、SummaryWriter,都是從相應的tensorflow中獲取的。如果可是直接獲取,則獲取,否則從tf.summary中獲取。

step2:用來連線多個tensor。利用dir(tf)判斷”concat_v2”是否在裡面,如果在的話,定義一個concat(tensors, axis, *args, **kwargs)函式,並返回tf.concat_v2(tensors, axis, *args, **kwargs);否則也定義concat(tensors, axis, *args, **kwargs)函式,只不過返回的是tf.concat(tensors, axis, *args, **kwargs)。其中,tf.concat使用如下:

t1=tf.constant([[1,2,3],[4,5,6]])
t2=tf.constant([[7,8,9],[10,11,12]])
t3=tf.concat([t1,t2],0)
t4=tf.concat([t1,t2],1)
print t1
print t2
print t3
print t4
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

這裡寫圖片描述

step3:定義一個batch_norm類,包含兩個函式initcall函式。首先在init(self, epsilon=1e-5, momentum = 0.9, name=”batch_norm”)函式中,定義一個name引數名字的變數,初始化self變數epsilon、momentum 、name。在call(self, x, train=True)函式中,利用tf.contrib.layers.batch_norm函式批處理規範化。

step4:定義conv_cond_concat(x,y)函式。連線x,y與Int32型的[x_shapes[0], x_shapes[1], x_shapes[2], y_shapes[3]]維度的張量乘積。

step5:定義conv2d(input_, output_dim, k_h=5, k_w=5, d_h=2,d_w=2, stddev=0.02,name=”conv2d”)函式。卷積函式:獲取隨機正態分佈權值、實現卷積、獲取初始偏置值,獲取新增偏置值後的卷積變數並返回。

step6:定義deconv2d(input_, output_shape,k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,name=”deconv2d”, with_w=False):函式。解卷積函式:獲取隨機正態分佈權值、解卷積,獲取初始偏置值,獲取新增偏置值後的卷積變數,判斷with_w是否為真,真則返回解卷積、權值、偏置值,否則返回解卷積。

step7:定義lrelu(x, leak=0.2, name=”lrelu”)函式。定義一個lrelu激勵函式。

step8:定義linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False)函式。進行線性運算,獲取一個隨機正態分佈矩陣,獲取初始偏置值,如果with_w為真,則返回xw+b,權值w和偏置值b;否則返回xw+b。

這個檔案主要定義了一些變數連線的函式、批處理規範化的函式、卷積函式、解卷積函式、激勵函式、線性運算函式。

2.3.4 model.py

原始碼(530行):

from __future__ import division
import os
import time
import math
from glob import glob  # file path search
import tensorflow as tf
import numpy as np
from six.moves import xrange

from ops import *
from utils import *

def conv_out_size_same(size, stride):
  return int(math.ceil(float(size) / float(stride)))

class DCGAN(object):
  def __init__(self, sess, input_height=108, input_width=108, crop=True,
         batch_size=64, sample_num = 64, output_height=64, output_width=64,
         y_dim=None, z_dim=100, gf_dim=64, df_dim=64,
         gfc_dim=1024, dfc_dim=1024, c_dim=3, dataset_name='default',
         input_fname_pattern='*.jpg', checkpoint_dir=None, sample_dir=None):
    """

    Args:
      sess: TensorFlow session
      batch_size: The size of batch. Should be specified before training.
      y_dim: (optional) Dimension of dim for y. [None]
      z_dim: (optional) Dimension of dim for Z. [100]
      gf_dim: (optional) Dimension of gen filters in first conv layer. [64]
      df_dim: (optional) Dimension of discrim filters in first conv layer. [64]
      gfc_dim: (optional) Dimension of gen units for for fully connected layer. [1024]
      dfc_dim: (optional) Dimension of discrim units for fully connected layer. [1024]
      c_dim: (optional) Dimension of image color. For grayscale input, set to 1. [3]
    """
    self.sess = sess
    self.crop = crop

    self.batch_size = batch_size
    self.sample_num = sample_num

    self.input_height = input_height
    self.input_width = input_width
    self.output_height = output_height
    self.output_width = output_width

    self.y_dim = y_dim
    self.z_dim = z_dim

    self.gf_dim = gf_dim
    self.df_dim = df_dim

    self.gfc_dim = gfc_dim
    self.dfc_dim = dfc_dim

    # batch normalization : deals with poor initialization helps gradient flow
    self.d_bn1 = batch_norm(name='d_bn1')
    self.d_bn2 = batch_norm(name='d_bn2')

    if not self.y_dim:
      self.d_bn3 = batch_norm(name='d_bn3')

    self.g_bn0 = batch_norm(name='g_bn0')
    self.g_bn1 = batch_norm(name='g_bn1')
    self.g_bn2 = batch_norm(name='g_bn2')

    if not self.y_dim:
      self.g_bn3 = batch_norm(name='g_bn3')

    self.dataset_name = dataset_name
    self.input_fname_pattern = input_fname_pattern
    self.checkpoint_dir = checkpoint_dir

    if self.dataset_name == 'mnist':
      self.data_X, self.data_y = self.load_mnist()
      self.c_dim = self.data_X[0].shape[-1]
    else:
      self.data = glob(os.path.join("./data", self.dataset_name, self.input_fname_pattern))
      imreadImg = imread(self.data[0]);
      if len(imreadImg.shape) >= 3: #check if image is a non-grayscale image by checking channel number
        self.c_dim = imread(self.data[0]).shape[-1]
      else:
        self.c_dim = 1

    self.grayscale = (self.c_dim == 1)

    self.build_model()

  def build_model(self):
    if self.y_dim:
      self.y= tf.placeholder(tf.float32, [self.batch_size, self.y_dim], name='y')

    if self.crop:
      image_dims = [self.output_height, self.output_width, self.c_dim]
    else:
      image_dims = [self.input_height, self.input_width, self.c_dim]

    self.inputs = tf.placeholder(
      tf.float32, [self.batch_size] + image_dims, name='real_images')

    inputs = self.inputs

    self.z = tf.placeholder(
      tf.float32, [None, self.z_dim], name='z')
    self.z_sum = histogram_summary("z", self.z)

    if self.y_dim:
      self.G = self.generator(self.z, self.y)
      self.D, self.D_logits = \
          self.discriminator(inputs, self.y, reuse=False)

      self.sampler = self.sampler(self.z, self.y)
      self.D_, self.D_logits_ = \
          self.discriminator(self.G, self.y, reuse=True)
    else:
      self.G = self.generator(self.z)
      self.D, self.D_logits = self.discriminator(inputs)

      self.sampler = self.sampler(self.z)
      self.D_, self.D_logits_ = self.discriminator(self.G, reuse=True)

    self.d_sum = histogram_summary("d", self.D)
    self.d__sum = histogram_summary("d_", self.D_)
    self.G_sum = image_summary("G", self.G)

    def sigmoid_cross_entropy_with_logits(x, y):
      try:
        return tf.nn.sigmoid_cross_entropy_with_logits(logits=x, labels=y)
      except:
        return tf.nn.sigmoid_cross_entropy_with_logits(logits=x, targets=y)

    self.d_loss_real = tf.reduce_mean(
      sigmoid_cross_entropy_with_logits(self.D_logits, tf.ones_like(self.D)))
    self.d_loss_fake = tf.reduce_mean(
      sigmoid_cross_entropy_with_logits(self.D_logits_, tf.zeros_like(self.D_)))
    self.g_loss = tf.reduce_mean(
      sigmoid_cross_entropy_with_logits(self.D_logits_, tf.ones_like(self.D_)))

    self.d_loss_real_sum = scalar_summary("d_loss_real", self.d_loss_real)
    self.d_loss_fake_sum = scalar_summary("d_loss_fake", self.d_loss_fake)

    self.d_loss = self.d_loss_real + self.d_loss_fake

    self.g_loss_sum = scalar_summary("g_loss", self.g_loss)
    self.d_loss_sum = scalar_summary("d_loss", self.d_loss)

    t_vars = tf.trainable_variables()

    self.d_vars = [var for var in t_vars if 'd_' in var.name]
    self.g_vars = [var for var in t_vars if 'g_' in var.name]

    self.saver = tf.train.Saver()

  def train(self, config):
    d_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
              .minimize(self.d_loss, var_list=self.d_vars)
    g_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
              .minimize(self.g_loss, var_list=self.g_vars)
    try:
      tf.global_variables_initializer().run()
    except:
      tf.initialize_all_variables().run()

    self.g_sum = merge_summary([self.z_sum, self.d__sum,
      self.G_sum, self.d_loss_fake_sum, self.g_loss_sum])
    self.d_sum = merge_summary(
        [self.z_sum, self.d_sum, self.d_loss_real_sum, self.d_loss_sum])
    self.writer = SummaryWriter("./logs", self.sess.graph)

    sample_z = np.random.uniform(-1, 1, size=(self.sample_num , self.z_dim))

    if config.dataset == 'mnist':
      sample_inputs = self.data_X[0:self.sample_num]
      sample_labels = self.data_y[0:self.sample_num]
    else:
      sample_files = self.data[0:self.sample_num]
      sample = [
          get_image(sample_file,
                    input_height=self.input_height,
                    input_width=self.input_width,
                    resize_height=self.output_height,
                    resize_width=self.output_width,
                    crop=self.crop,
                    grayscale=self.grayscale) for sample_file in sample_files]
      if (self.grayscale):
        sample_inputs = np.array(sample).astype(np.float32)[:, :, :, None]
      else:
        sample_inputs = np.array(sample).astype(np.float32)

    counter = 1
    start_time = time.time()
    could_load, checkpoint_counter = self.load(self.checkpoint_dir)
    if could_load:
      counter = checkpoint_counter
      print(" [*] Load SUCCESS")
    else:
      print(" [!] Load failed...")

    for epoch in xrange(config.epoch):
      if config.dataset == 'mnist':
        batch_idxs = min(len(self.data_X), config.train_size) // config.batch_size
      else:      
        self.data = glob(os.path.join(
          "./data", config.dataset, self.input_fname_pattern))
        batch_idxs = min(len(self.data), config.train_size) // config.batch_size

      for idx in xrange(0, batch_idxs):
        if config.dataset == 'mnist':
          batch_images = self.data_X[idx*config.batch_size:(idx+1)*config.batch_size]
          batch_labels = self.data_y[idx*config.batch_size:(idx+1)*config.batch_size]
        else:
          batch_files = self.data[idx*config.batch_size:(idx+1)*config.batch_size]
          batch = [
              get_image(batch_file,
                        input_height=self.input_height,
                        input_width=self.input_width,
                        resize_height=self.output_height,
                        resize_width=self.output_width,
                        crop=self.crop,
                        grayscale=self.grayscale) for batch_file in batch_files]
          if self.grayscale:
            batch_images = np.array(batch).astype(np.float32)[:, :, :, None]
          else:
            batch_images = np.array(batch).astype(np.float32)

        batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]) \
              .astype(np.float32)

        if config.dataset == 'mnist':
          # Update D network
          _, summary_str = self.sess.run([d_optim, self.d_sum],
            feed_dict={ 
              self.inputs: batch_images,
              self.z: batch_z,
              self.y:batch_labels,
            })
          self.writer.add_summary(summary_str, counter)

          # Update G network
          _, summary_str = self.sess.run([g_optim, self.g_sum],
            feed_dict={
              self.z: batch_z, 
              self.y:batch_labels,
            })
          self.writer.add_summary(summary_str, counter)

          # Run g_optim twice to make sure that d_loss does not go to zero (different from paper)
          _, summary_str = self.sess.run([g_optim, self.g_sum],
            feed_dict={ self.z: batch_z, self.y:batch_labels })
          self.writer.add_summary(summary_str, counter)

          errD_fake = self.d_loss_fake.eval({
              self.z: batch_z, 
              self.y:batch_labels
          })
          errD_real = self.d_loss_real.eval({
              self.inputs: batch_images,
              self.y:batch_labels
          })
          errG = self.g_loss.eval({
              self.z: batch_z,
              self.y: batch_labels
          })
        else:
          # Update D network
          _, summary_str = self.sess.run([d_optim, self.d_sum],
            feed_dict={ self.inputs: batch_images, self.z: batch_z })
          self.writer.add_summary(summary_str, counter)

          # Update G network
          _, summary_str = self.sess.run([g_optim, self.g_sum],
            feed_dict={ self.z: batch_z })
          self.writer.add_summary(summary_str, counter)

          # Run g_optim twice to make sure that d_loss does not go to zero (different from paper)
          _, summary_str = self.sess.run([g_optim, self.g_sum],
            feed_dict={ self.z: batch_z })
          self.writer.add_summary(summary_str, counter)

          errD_fake = self.d_loss_fake.eval({ self.z: batch_z })
          errD_real = self.d_loss_real.eval({ self.inputs: batch_images })
          errG = self.g_loss.eval({self.z: batch_z})

        counter += 1
        print("Epoch: [%2d] [%4d/%4d] time: %4.4f, d_loss: %.8f, g_loss: %.8f" \
          % (epoch, idx, batch_idxs,
            time.time() - start_time, errD_fake+errD_real, errG))

        if np.mod(counter, 100) == 1:
          if config.dataset == 'mnist':
            samples, d_loss, g_loss = self.sess.run(
              [self.sampler, self.d_loss, self.g_loss],
              feed_dict={
                  self.z: sample_z,
                  self.inputs: sample_inputs,
                  self.y:sample_labels,
              }
            )
            save_images(samples, image_manifold_size(samples.shape[0]),
                  './{}/train_{:02d}_{:04d}.png'.format(config.sample_dir, epoch, idx))
            print("[Sample] d_loss: %.8f, g_loss: %.8f" % (d_loss, g_loss)) 
          else:
            try:
              samples, d_loss, g_loss = self.sess.run(
                [self.sampler, self.d_loss, self.g_loss],
                feed_dict={
                    self.z: sample_z,
                    self.inputs: sample_inputs,
                },
              )
              save_images(samples, image_manifold_size(samples.shape[0]),
                    './{}/train_{:02d}_{:04d}.png'.format(config.sample_dir, epoch, idx))
              print("[Sample] d_loss: %.8f, g_loss: %.8f" % (d_loss, g_loss)) 
            except:
              print("one pic error!...")

        if np.mod(counter, 500) == 2:
          self.save(config.checkpoint_dir, counter)

  def discriminator(self, image, y=None, reuse=False):
    with tf.variable_scope("discriminator") as scope:
      if reuse:
        scope.reuse_variables()

      if not self.y_dim:
        h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
        h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
        h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
        h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
        h4 = linear(tf.reshape(h3, [self.batch_size, -1]), 1, 'd_h4_lin')

        return tf.nn.sigmoid(h4), h4
      else:
        yb = tf.reshape(y, [self.batch_size, 1, 1, self.y_dim])
        x = conv_cond_concat(image, yb)

        h0 = lrelu(conv2d(x, self.c_dim + self.y_dim, name='d_h0_conv'))
        h0 = conv_cond_concat(h0, yb)

        h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim + self.y_dim, name='d_h1_conv')))
        h1 = tf.reshape(h1, [self.batch_size, -1])      
        h1 = concat([h1, y], 1)

        h2 = lrelu(self.d_bn2(linear(h1, self.dfc_dim, 'd_h2_lin')))
        h2 = concat([h2, y], 1)

        h3 = linear(h2, 1, 'd_h3_lin')

        return tf.nn.sigmoid(h3), h3

  def generator(self, z, y=None):
    with tf.variable_scope("generator") as scope:
      if not self.y_dim:
        s_h, s_w = self.output_height, self.output_width
        s_h2, s_w2 = conv_out_size_same(s_h, 2), conv_out_size_same(s_w, 2)
        s_h4, s_w4 = conv_out_size_same(s_h2, 2), conv_out_size_same(s_w2, 2)
        s_h8, s_w8 = conv_out_size_same(s_h4, 2), conv_out_size_same(s_w4, 2)
        s_h16, s_w16 = conv_out_size_same(s_h8, 2), conv_out_size_same(s_w8, 2)

        # project `z` and reshape
        self.z_, self.h0_w, self.h0_b = linear(
            z, self.gf_dim*8*s_h16*s_w16, 'g_h0_lin', with_w=True)

        self.h0 = tf.reshape(
            self.z_, [-1, s_h16, s_w16, self.gf_dim * 8])
        h0 = tf.nn.relu(self.g_bn0(self.h0))

        self.h1, self.h1_w, self.h1_b = deconv2d(
            h0, [self.batch_size, s_h8, s_w8, self.gf_dim*4], name='g_h1', with_w=True)
        h1 = tf.nn.relu(self.g_bn1(self.h1))

        h2, self.h2_w, self.h2_b = deconv2d(
            h1, [self.batch_size, s_h4, s_w4, self.gf_dim*2], name='g_h2', with_w=True)
        h2 = tf.nn.relu(self.g_bn2(h2))

        h3, self.h3_w, self.h3_b = deconv2d(
            h2, [self.batch_size, s_h2, s_w2, self.gf_dim*1], name='g_h3', with_w=True)
        h3 = tf.nn.relu(self.g_bn3(h3))

        h4, self.h4_w, self.h4_b = deconv2d(
            h3, [self.batch_size, s_h, s_w, self.c_dim], name='g_h4', with_w=True)

        return tf.nn.tanh(h4)
      else:
        s_h, s_w = self.output_height, self.output_width
        s_h2, s_h4 = int(s_h/2), int(s_h/4)
        s_w2, s_w4 = int(s_w/2), int(s_w/4)

        # yb = tf.expand_dims(tf.expand_dims(y, 1),2)
        yb = tf.reshape(y, [self.batch_size, 1, 1, self.y_dim])
        z = concat([z, y], 1)

        h0 = tf.nn.relu(
            self.g_bn0(linear(z, self.gfc_dim, 'g_h0_lin')))
        h0 = concat([h0, y], 1)

        h1 = tf.nn.relu(self.g_bn1(
            linear(h0, self.gf_dim*2*s_h4*s_w4, 'g_h1_lin')))
        h1 = tf.reshape(h1, [self.batch_size, s_h4, s_w4, self.gf_dim * 2])

        h1 = conv_cond_concat(h1, yb)

        h2 = tf.nn.relu(self.g_bn2(deconv2d(h1,
            [self.batch_size, s_h2, s_w2, self.gf_dim * 2], name='g_h2')))
        h2 = conv_cond_concat(h2, yb)

        return tf.nn.sigmoid(
            deconv2d(h2, [self.batch_size, s_h, s_w, self.c_dim], name='g_h3'))

  def sampler(self, z, y=None):
    with tf.variable_scope("generator") as scope:
      scope.reuse_variables()

      if not self.y_dim:
        s_h, s_w = self.output_height, self.output_width
        s_h2, s_w2 = conv_out_size_same(s_h, 2), conv_out_size_same(s_w, 2)
        s_h4, s_w4 = conv_out_size_same(s_h2, 2), conv_out_size_same(s_w2, 2)
        s_h8, s_w8 = conv_out_size_same(s_h4, 2), conv_out_size_same(s_w4, 2)
        s_h16, s_w16 = conv_out_size_same(s_h8, 2), conv_out_size_same(s_w8, 2)

        # project `z` and reshape
        h0 = tf.reshape(
            linear(z, self.gf_dim*8*s_h16*s_w16, 'g_h0_lin'),
            [-1, s_h16, s_w16, self.gf_dim * 8])
        h0 = tf.nn.relu(self.g_bn0(h0, train=False))

        h1 = deconv2d(h0, [self.batch_size, s_h8, s_w8, self.gf_dim*4], name='g_h1')
        h1 = tf.nn.relu(self.g_bn1(h1, train=False))

        h2 = deconv2d(h1, [self.batch_size, s_h4, s_w4, self.gf_dim*2], name='g_h2')
        h2 = tf.nn.relu(self.g_bn2(h2, train=False))

        h3 = deconv2d(h2, [self.batch_size, s_h2, s_w2, self.gf_dim*1], name='g_h3')
        h3 = tf.nn.relu(self.g_bn3(h3, train=False))

        h4 = deconv2d(h3, [self.batch_size, s_h, s_w, self.c_dim], name='g_h4')

        return tf.nn.tanh(h4)
      else:
        s_h, s_w = self.output_height, self.output_width
        s_h2, s_h4 = int(s_h/2), int(s_h/4)
        s_w2, s_w4 = int(s_w/2), int(s_w/4)

        # yb = tf.reshape(y, [-1, 1, 1, self.y_dim])
        yb = tf.reshape(y, [self.batch_size, 1, 1, self.y_dim])
        z = concat([z, y], 1)

        h0 = tf.nn.relu(self.g_bn0(linear(z, self.gfc_dim, 'g_h0_lin'), train=False))
        h0 = concat([h0, y], 1)

        h1 = tf.nn.relu(self.g_bn1(
            linear(h0, self.gf_dim*2*s_h4*s_w4, 'g_h1_lin'), train=False))
        h1 = tf.reshape(h1, [self.batch_size, s_h4, s_w4, self.gf_dim * 2])
        h1 = conv_cond_concat(h1, yb)

        h2 = tf.nn.relu(self.g_bn2(
            deconv2d(h1, [self.batch_size, s_h2, s_w2, self.gf_dim * 2], name='g_h2'), train=False))
        h2 = conv_cond_concat(h2, yb)

        return tf.nn.sigmoid(deconv2d(h2, [self.batch_size, s_h, s_w, self.c_dim], name='g_h3'))

  def load_mnist(self):
    data_dir = os.path.join("./data", self.dataset_name)

    fd = open(os.path.join(data_dir,'train-images-idx3-ubyte'))
    loaded = np.fromfile(file=fd,dtype=np.uint8)
    trX = loaded[16:].reshape((60000,28,28,1)).astype(np.float)

    fd = open(os.path.join(data_dir,'train-labels-idx1-ubyte'))
    loaded = np.fromfile(file=fd,dtype=np.uint8)
    trY = loaded[8:].reshape((60000)).astype(np.float)

    fd = open(os.path.join(data_dir,'t10k-images-idx3-ubyte'))
    loaded = np.fromfile(file=fd,dtype=np.uint8)
    teX = loaded[16:].reshape((10000,28,28,1)).astype(np.float)

    fd = open(os.path.join(data_dir,'t10k-labels-idx1-ubyte'))
    loaded = np.fromfile(file=fd,dtype=np.uint8)
    teY = loaded[8:].reshape((10000)).astype(np.float)

    trY = np.asarray(trY)
    teY = np.asarray(teY)

    X = np.concatenate((trX, teX), axis=0)
    y = np.concatenate((trY, teY), axis=0).astype(np.int)

    seed = 547
    np.random.seed(seed)
    np.random.shuffle(X)
    np.random.seed(seed)
    np.random.shuffle(y)

    y_vec = np.zeros((len(y), self.y_dim), dtype=np.float)
    for i, label in enumerate(y):
      y_vec[i,y[i]] = 1.0

    return X/255.,y_vec

  @property
  def model_dir(self):
    return "{}_{}_{}_{}".format(
        self.dataset_name, self.batch_size,
        self.output_height, self.output_width)

  def save(self, checkpoint_dir, step):
    model_name = "DCGAN.model"
    checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)

    if not os.path.exists(checkpoint_dir):
      os.makedirs(checkpoint_dir)

    self.saver.save(self.sess,
            os.path.join(checkpoint_dir, model_name),
            global_step=step)

  def load(self, checkpoint_dir):
    import re
    print(" [*] Reading checkpoints...")
    checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)

    ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
    if ckpt and ckpt.model_checkpoint_path:
      ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
      self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
      counter = int(next(re.finditer("(\d+)(?!.*\d)",ckpt_name)).group(0))
      print(" [*] Success to read {}".format(ckpt_name))
      return True, counter
    else:
      print(" [*] Failed to find a checkpoint")
      return False, 0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432
  • 433
  • 434
  • 435
  • 436
  • 437
  • 438
  • 439
  • 440
  • 441
  • 442
  • 443
  • 444
  • 445
  • 446
  • 447
  • 448
  • 449
  • 450
  • 451
  • 452
  • 453
  • 454
  • 455
  • 456
  • 457
  • 458
  • 459
  • 460
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • 472
  • 473
  • 474
  • 475
  • 476
  • 477
  • 478
  • 479
  • 480
  • 481
  • 482
  • 483
  • 484
  • 485
  • 486
  • 487
  • 488
  • 489
  • 490
  • 491
  • 492
  • 493
  • 494
  • 495
  • 496
  • 497
  • 498
  • 499
  • 500
  • 501
  • 502
  • 503
  • 504
  • 505
  • 506
  • 507
  • 508
  • 509
  • 510
  • 511
  • 512
  • 513
  • 514
  • 515
  • 516
  • 517
  • 518
  • 519
  • 520
  • 521
  • 522
  • 523
  • 524
  • 525
  • 526
  • 527
  • 528
  • 529
  • 530

這個檔案就是DCGAN模型定義的函式。呼叫了utils.py檔案和ops.py檔案。

step0:定義conv_out_size_same(size, stride)函式。大小和步幅。

step1:然後是定義了DCGAN類,剩餘程式碼都是在寫DCGAN類,所以下面幾步都是在這個類裡面定義進行的。

step2:定義類的初始化函式 init。主要是對一些預設的引數進行初始化。包括session、crop、批處理大小batch_size、樣本數量sample_num、輸入與輸出的高和寬、各種維度、生成器與判別器的批處理、資料集名字、灰度值、構建模型函式,需要注意的是,要判斷資料集的名字是否是mnist,是的話則直接用load_mnist()函式載入資料,否則需要從本地data資料夾中讀取資料,並將影象讀取為灰度圖。

step3:定義構建模型函式build_model(self)。

  1. 首先判斷y_dim,然後用tf.placeholder佔位符定義並初始化y。
  2. 判斷crop是否為真,是的話是進行測試,影象維度是輸出影象的維度;否則是輸入影象的維度。
  3. 利用tf.placeholder定義inputs,是真實資料的向量。
  4. 定義並初始化生成器用到的噪音z,z_sum。
  5. 再次判斷y_dim,如果為真,用噪音z和標籤y初始化生成器G、用輸入inputs初始化判別器D和D_logits、樣本、用G和y初始化D_和D_logits;如果為假,跟上面一樣初始化各種變數,只不過都沒有標籤y。
  6. 將5中的D、D_、G分別放在d_sum、d__sum、G_sum。
  7. 定義sigmoid交叉熵損失函式sigmoid_cross_entropy_with_logits(x, y)。都是呼叫tf.nn.sigmoid_cross_entropy_with_logits函式,只不過一個是訓練,y是標籤,一個是測試,y是目標。
  8. 定義各種損失值。真實資料的判別損失值d_loss_real、虛假資料的判別損失值d_loss_fake、生成器損失值g_loss、判別器損失值d_loss。
  9. 定義訓練的所有變數t_vars。
  10. 定義生成和判別的引數集。
  11. 最後是儲存。

step4:定義訓練函式train(self, config)。

  1. 定義判別器優化器d_optim和生成器優化器g_optim。
  2. 變數初始化。
  3. 分別將關於生成器和判別器有關的變數各合併到一個變數中,並寫入事件檔案中。
  4. 噪音z初始化。
  5. 根據資料集是否為mnist的判斷,進行輸入資料和標籤的獲取。這裡使用到了utils.py檔案中的get_image函式。
  6. 定義計數器counter和起始時間start_time。
  7. 載入檢查點,並判斷載入是否成功。
  8. 開始for epoch in xrange(config.epoch)迴圈訓練。先判斷資料集是否是mnist,獲取批處理的大小。
  9. 開始for idx in xrange(0, batch_idxs)迴圈訓練,判斷資料集是否是mnist,來定義初始化批處理影象和標籤。
  10. 定義初始化噪音z。
  11. 判斷資料集是否是mnist,來更新判別器網路和生成器網路,這裡就不管mnist資料集是怎麼處理的,其他資料集是,執行生成器優化器兩次,以確保判別器損失值不會變為0,然後是判別器真實資料損失值和虛假資料損失值、生成器損失值。
  12. 輸出本次批處理中訓練引數的情況,首先是第幾個epoch,第幾個batch,訓練時間,判別器損失值,生成器損失值。
  13. 每100次batch訓練後,根據資料集是否是mnist的不同,獲取樣本、判別器損失值、生成器損失值,呼叫utils.py檔案的save_images函式,儲存訓練後的樣本,並以epoch、batch的次數命名檔案。然後列印判別器損失值和生成器損失值。
  14. 每500次batch訓練後,儲存一次檢查點。

step5:定義判別器函式discriminator(self, image, y=None, reuse=False)。

  1. 利用with tf.variable_scope(“discriminator”) as scope,在一個作用域 scope 內共享一些變數。
  2. 對scope利用reuse_variables()進行重利用。
  3. 如果為假,則直接設定5層,前4層為使用lrelu啟用函式的卷積層,最後一層是使用線性層,最後返回h4和sigmoid處理後的h4。
  4. 如果為真,則首先將Y_dim變為yb,然後利用ops.py檔案中的conv_cond_concat函式,連線image與yb得到x,然後設定4層網路,前3層是使用lrelu激勵函式的卷積層,最後一層是線性層,最後返回h3和sigmoid處理後的h3。

step6:定義生成器函式generator(self, z, y=None)。

  1. 利用with tf.variable_scope(“generator”) as scope,在一個作用域 scope 內共享一些變數。
  2. 根據y_dim是否為真,進行判別網路的設定。
  3. 如果為假:首先獲取輸出的寬和高,然後根據這一值得到更多不同大小的高和寬的對。然後獲取h0層的噪音z,權值w,偏置值b,然後利用relu激勵函式。h1層,首先對h0層解卷積得到本層的權值和偏置值,然後利用relu激勵函式。h2、h3等同於h1。h4層,解卷積h3,然後直接返回使用tanh激勵函式後的h4。
  4. 如果為真:首先也是獲取輸出的高和寬,根據這一值得到更多不同大小的高和寬的對。然後獲取yb和噪音z。h0層,使用relu激勵函式,並與1連線。h1層,對線性全連線後使用relu激勵函式,並與yb連線。h2層,對解卷積後使用relu激勵函式,並與yb連線。最後返回解卷積、sigmoid處理後的h2。

step7:定義sampler(self, z, y=None)函式。

  1. 利用tf.variable_scope(“generator”) as scope,在一個作用域 scope 內共享一些變數。
  2. 對scope利用reuse_variables()進行重利用。
  3. 根據y_dim是否為真,進行判別網路的設定。
  4. 然後就跟生成器差不多,不在贅述。

step8:定義load_mnist(self)函式。這個主要是針對mnist資料集設定的,所以暫且不考慮,過。

step9:定義model_dir(self)函式。返回資料集名字,batch大小,輸出的高和寬。

step10:定義save(self, checkpoint_dir, step)函式。儲存訓練好的模型。建立檢查點資料夾,如果路徑不存在,則建立;然後將其儲存在這個資料夾下。

step11:定義load(self, checkpoint_dir)函式。讀取檢查點,獲取路徑,重新儲存檢查點,並且計數。列印成功讀取的提示;如果沒有路徑,則列印失敗的提示。

以上,就是model.py所有內容,主要是定義了DCGAN的類,完成了生成判別網路的實現。

2.4 訓練

現在,整個4個檔案都已經分析完畢,開始執行。

step0:由於我們使用的動漫人臉資料集,所以我們需要在原始檔的路徑下,建一個data資料夾,然後將放有資料的資料夾放在這個data資料夾中,如下所示。

這裡寫圖片描述

這裡寫圖片描述

step1:執行命令如下,需要制定各種引數,如我們的輸入資料的高寬,輸出的高寬,是哪個資料集,是否測試、訓練,執行幾個epoch。

如果你看到了此處,很好,接下來一系列的問題都是由於這裡的原因導致我的訓練不收斂,出來的結果亂七八糟!!這是因為,引數名稱寫錯了!!!應該是:

python main.py --input_height 96 --output_height 48 --dataset faces --crop True --train True --epoch 10
  • 1

下面這個引數名稱是錯誤的!(嗯,後面我還是會再說一遍的)

python main.py --image_size 96 --output_size 48 --dataset faces --crop True --train True --epoch 10
  • 1

這裡寫圖片描述

step2:中間結果

這是第0個epoch,前3個batch:

這裡寫圖片描述

新生成的檔案:

這裡寫圖片描述

step3:訓練和測試結果

如果你又看到這裡,可以忽略,直接去結果那看,因為這裡都是引數沒寫對,生成的不收斂的結果!

第一個epoch:

這裡寫圖片描述

第9個epoch:

這裡寫圖片描述

看得出來,效果並不咋地,與參考更是相差甚遠,這是因為訓練資料只有3000+,而且總共訓練了10個epoch。本來只是先試試,畢竟是純cpu在跑,還有2個G,哎。

step4:這次訓練資料選了16383張,epoch==300,跑了一晚上了,今天來看才到第5個epoch,嗯,慢慢等。

step5:重新在伺服器上訓練,這次選了參考部落格上提供的資料集,因為前兩次自己採集處理的資料集,或是因為資料集過小,訓練效果差強人意,所以直接拿這個5萬左右的資料集來試試。epoch==300。

step6:效果太差了。也不知道是哪裡的問題,先把結果截圖放上去,等有空再查查是什麼原因。(嚴重懷疑是我的資料集有問題,因為當時在本地跑時對資料操作過,可能出現了問題。後面有空再弄吧)

結果標題代表第幾個epoch第幾個batch。

這裡寫圖片描述

這裡寫圖片描述

這裡寫圖片描述

這裡寫圖片描述

2.5 結果

好了,終於找到原因了,是因為引數名稱寫錯了,沒有將輸入資料的高寬與輸出資料的高寬由原先的108與64改為96與48,簡直是太蠢了!!(此處感謝評論裡某位小夥伴!要不是他說修改了引數我都沒注意到)

重新訓練:

python main.py --input_height 96 --output_height 48 --dataset faces --crop True --train True --epoch 10
  • 1

只用了10個epoch,效果就已經有點可觀了,等伺服器有空跑個300試試。

換了epoch==300,先放幾張已有的效果,等跑完300再把全部結果放上來。

epoch 0

這裡寫圖片描述

這裡寫圖片描述

epoch 5

這裡寫圖片描述

epoch 10

這裡寫圖片描述

epoch 20

這裡寫圖片描述

epoch 100

這裡寫圖片描述

這裡寫圖片描述

epoch 200

這裡寫圖片描述

這裡寫圖片描述

epoch 300

這裡寫圖片描述

這裡寫圖片描述