有N個頂點的無向圖,最初沒有邊,接下來有Q組詢問,格式如下:
- 1 u v:在頂點u和v之間加一條邊;
- 2 x k: 問與頂點v連通的分量中,頂點編號第k大的是誰?如果不存在,輸出-1.
1<=N,Q<=2E5,1<=u<v<=N, 1<=x<=N, 1<=k<=10
分析:由於k比較小,直接用vector維護連通分量的頂點集合,在合併時,如果頂點數超過k,則只取最大的k個。剩下的就是並查集模板操作。
#include <bits/stdc++.h>
using i64 = long long;
struct Dsu {
void init(int n) {
fa.resize(n + 1);
has.resize(n + 1);
for (int i = 1; i <= n; i++) {
fa[i] = i;
has[i].push_back(i);
}
}
int leader(int x) {
return x == fa[x] ? x : fa[x] = leader(fa[x]);
}
void join(int x, int y) {
x = leader(x);
y = leader(y);
if (x != y) {
if (has[x].size() < has[y].size()) {
std::swap(x, y);
}
for (auto i : has[y]) {
has[x].push_back(i);
}
std::sort(has[x].rbegin(), has[x].rend());
if (has[x].size() > 10) {
has[x].resize(10);
}
fa[y] = x;
}
}
std::vector<int> fa;
std::vector<std::vector<int>> has;
};
void solve() {
int N, Q;
std::cin >> N >> Q;
Dsu dsu;
dsu.init(N);
for (int i = 1; i <= Q; i++) {
int x, y, z;
std::cin >> x >> y >> z;
if (x == 1) {
dsu.join(y, z);
} else {
int u = dsu.leader(y);
if (z <= dsu.has[u].size()) {
std::cout << dsu.has[u][z - 1] << "\n";
} else {
std::cout << "-1\n";
}
}
}
}
int main() {
std::cin.tie(0)->sync_with_stdio(0);
int t = 1;
while (t--) solve();
return 0;
}
如果k的範圍是[1,N],可以考慮用平衡樹來維護連通分量,需要用到啟發式合併。
#include <bits/stdc++.h>
using i64 = long long;
template <typename TYPE>
struct Treap {
struct Node {
TYPE data;
int rnd, siz, dup, son[2];
Node() { memset(&data, 0, sizeof(data)); rnd = siz = son[0] = son[1] = 0; }
Node(const TYPE &d, int cnt=1) { init(d, cnt); }
void init(const TYPE & d, int cnt) { data = d; dup = cnt; rnd = rand(); siz = 1; son[0] = son[1] = 0; }
};
Treap(int multi=1):multiple(multi) { reset(); }
void setmulti(int multi) { multiple = multi; }
int newnode(const TYPE & d, int cnt) {
if (!reuse.empty()) {
int r = reuse.front();
reuse.pop_front();
node[r].init(d, cnt);
return r;
}
node.push_back({d, cnt});
return node.size() - 1;
}
void reset() { root = 0; node.resize(1); reuse.clear(); }
void maintain(int x) {
node[x].siz = node[x].dup;
if (node[x].son[0]) {
node[x].siz += node[node[x].son[0]].siz;
}
if (node[x].son[1]) {
node[x].siz += node[node[x].son[1]].siz;
}
}
void rotate(int d, int &r) {
int k = node[r].son[d^1];
node[r].son[d^1] = node[k].son[d];
node[k].son[d] = r;
maintain(r);
maintain(k);
r = k;
}
void insert(const TYPE &data, int cnt, int &r) {
if (r) {
if (!(data < node[r].data) && !(node[r].data < data)) {
if (multiple) {
node[r].dup += cnt;
maintain(r);
}
} else {
int d = data < node[r].data ? 0 : 1;
// avoid push_back -> realloc
int u = node[r].son[d];
insert(data, cnt, u);
node[r].son[d] = u;
if (node[node[r].son[d]].rnd > node[r].rnd) {
rotate(d^1, r);
} else {
maintain(r);
}
}
} else {
r = newnode(data, cnt);
}
}
TYPE kth(int k) {
assert(1 <= k && k <= size());
for (int r = root; r; ) {
int x = node[r].son[0] ? node[node[r].son[0]].siz : 0;
int y = node[r].dup;
if (k <= x) {
r = node[r].son[0];
} else if (k <= x + y) {
return node[r].data;
} else {
k -= x + y;
r = node[r].son[1];
}
}
assert(k == 0);
return 0;
}
TYPE Kth(int k) {
assert(1 <= k && k <= size());
for (int r = root; r; ) {
int x = node[r].son[1] ? node[node[r].son[1]].siz : 0;
int y = node[r].dup;
if (k <= x) {
r = node[r].son[1];
} else if (k <= x + y) {
return node[r].data;
} else {
k -= x + y;
r = node[r].son[0];
}
}
assert(k == 0);
return 0;
}
void erase(const TYPE& data, int cnt, int & r) {
if (r == 0) return;
int d = -1;
if (data < node[r].data) {
d = 0;
} else if (node[r].data < data) {
d = 1;
}
if (d == -1) {
node[r].dup -= cnt;
if (node[r].dup > 0) {
maintain(r);
} else {
if (node[r].son[0] == 0) {
reuse.push_back(r);
r = node[r].son[1];
} else if (node[r].son[1] == 0) {
reuse.push_back(r);
r = node[r].son[0];
} else {
int dd = node[node[r].son[0]].rnd > node[node[r].son[1]].rnd ? 1 : 0;
rotate(dd, r);
erase(data, node[r].son[dd]);
}
}
} else {
erase(data, cnt, node[r].son[d]);
}
if (r) maintain(r);
}
int ltcnt(const TYPE &data) {
int ans = 0;
for (int r = root; r; ) {
int x = node[r].son[0] ? node[node[r].son[0]].siz : 0;
if (node[r].data < data) {
ans += node[r].dup + x;
r = node[r].son[1];
} else if (data < node[r].data) {
r = node[r].son[0];
} else {
ans += x;
break;
}
}
return ans;
}
int gtcnt(const TYPE &data) {
int ans = 0;
for (int r = root; r; ) {
int x = node[r].son[1] ? node[node[r].son[1]].siz : 0;
if (node[r].data < data) {
r = node[r].son[1];
} else if (data < node[r].data) {
ans += node[r].dup + x;
r = node[r].son[0];
} else {
ans += x;
break;
}
}
return ans;
}
int count(const TYPE &data) {
for (int r = root; r; ) {
if (data < node[r].data) {
r = node[r].son[0];
} else if (node[r].data < data) {
r = node[r].son[1];
} else {
return node[r].dup;
}
}
return 0;
}
std::pair<bool,TYPE> prev(const TYPE &data) {
std::pair<bool,TYPE> ans = {false, 0};
for (int r = root; r; ) {
if (node[r].data < data) {
if (ans.first) {
ans.second = std::max(ans.second, node[r].data);
} else {
ans = {true, node[r].data};
}
r = node[r].son[1];
} else {
r = node[r].son[0];
}
}
return ans;
}
std::pair<bool,TYPE> next(const TYPE &data) {
std::pair<bool,TYPE> ans = {false, 0};
for (int r = root; r; ) {
if (data < node[r].data) {
if (ans.first) {
ans.second = std::min(ans.second, node[r].data);
} else {
ans = {true, node[r].data};
}
r = node[r].son[0];
} else {
r = node[r].son[1];
}
}
return ans;
}
void dofetch(int r, std::vector<std::pair<TYPE,int>> &vec) const {
if (r) {
dofetch(node[r].son[0], vec);
vec.push_back({node[r].data, node[r].dup});
dofetch(node[r].son[1], vec);
}
}
void fetch(std::vector<std::pair<TYPE,int>> &vec) const {
dofetch(root, vec);
}
void merge(const Treap<TYPE> &rhs) {
std::vector<std::pair<TYPE,int>> vp;
rhs.fetch(vp);
for (auto &pr : vp) {
insert(pr.first, pr.second);
}
}
std::vector<Node> node;
std::deque<int> reuse;
int root, multiple;
void insert(const TYPE& data, int cnt=1) { insert(data, cnt, root); }
void erase(const TYPE& data, int cnt=1) { return erase(data, cnt, root); }
int size() const { return root ? node[root].siz : 0; }
int lecnt(const TYPE& data) { return size() - gtcnt(data, root); }
int gecnt(const TYPE& data) { return size() - ltcnt(data, root); }
};
struct Dsu {
void init(int n) {
fa.resize(n + 1);
has.resize(n + 1);
for (int i = 1; i <= n; i++) {
fa[i] = i;
has[i].insert(i);
}
}
int leader(int x) {
return x == fa[x] ? x : fa[x] = leader(fa[x]);
}
void join(int x, int y) {
x = leader(x);
y = leader(y);
if (x != y) {
if (has[x].size() < has[y].size()) {
std::swap(x, y);
}
has[x].merge(has[y]);
fa[y] = x;
}
}
std::vector<int> fa;
std::vector<Treap<int>> has;
};
void solve() {
int N, Q;
std::cin >> N >> Q;
Dsu dsu;
dsu.init(N);
for (int i = 1; i <= Q; i++) {
int x, y, z;
std::cin >> x >> y >> z;
if (x == 1) {
dsu.join(y, z);
} else {
int u = dsu.leader(y);
if (z <= dsu.has[u].size()) {
std::cout << dsu.has[u].Kth(z) << "\n";
} else {
std::cout << "-1\n";
}
}
}
}
int main() {
std::cin.tie(0)->sync_with_stdio(0);
int t = 1;
while (t--) solve();
return 0;
}