Flink State 有可能代替資料庫嗎?
有狀態的計算作為容錯以及資料一致性的保證,是當今實時計算必不可少的特性之一,流行的實時計算引擎包括 Google Dataflow、Flink、Spark (Structure) Streaming、Kafka Streams 都分別提供對內建 State 的支援。State 的引入使得實時應用可以不依賴外部資料庫來儲存後設資料及中間資料,部分情況下甚至可以直接用 State 儲存結果資料,這讓業界不禁思考: State 和 Database 是何種關係?有沒有可能用 State 來代替資料庫呢?
在這個課題上,Flink 社群是比較早就開始探索的。總體來說,Flink 社群的努力可以分為兩條線: 一是在作業執行時透過作業查詢介面訪問 State 的能力,即 QueryableState;二是透過 State 的離線 dump 檔案(Savepoint)來離線查詢和修改 State 的能力,即即將引入的 Savepoint Processor API。
QueryableState
在 2017 年釋出的 Flink 1.2 版本,Flink 引入了 QueryableState 的特性以允許使用者透過特定的 client 查詢作業 State 的內容 [1],這意味著 Flink 應用可以在完全不依賴 State 儲存介質以外的外部儲存的情況下提供實時訪問計算結果的能力。
只透過 Queryable State 提供實時資料訪問
然而,QueryableState 雖然設想上比較理想化,但由於依賴底層架構的改動較多且功能也比較受限,它一直處於 Beta 版本並不能用於生產環境。針對這個問題,在前段時間騰訊的工程師楊華提出 QueryableState 的改進計劃 [2]。在郵件列表中,社群就 QueryableState 是否可以用於代替資料庫作了討論並出現了不同的觀點。筆者結合個人見解將 State as Database 的主要優缺點整理如下。
優點:
- 更低的資料延遲。一般情況下 Flink 應用的計算結果需要同步到外部的資料庫,比如定時觸發輸出視窗計算結果,而這種同步通常是定時的會帶來一定的延遲,導致計算是實時的而查詢卻不是實時的尷尬局面,而直接 State 則可以避免這個問題。
- 更強的資料一致性保證。根據外部儲存的特性不同,Flink Connector 或者自定義的 SinkFunction 提供的一致性保障也有所差別。比如對於不支援多行事務的 HBase,Flink 只能透過業務邏輯的冪等性來保障 Exactly-Once 投遞。相比之下 State 則有妥妥的 Exactly-Once 投遞保證。
- 節省資源。因為減少了同步資料到外部儲存的需要,我們可以節省序列化和網路傳輸的成本,另外當然還可以節省資料庫成本。
缺點:
- SLA 保障不足。資料庫技術已經非常成熟,在可用性、容錯性和運維上都很多的積累,在這點上 State 還相當於是處於原始人時期。另外從定位上來看,Flink 作業有版本迭代維護或者遇到錯誤自動重啟帶來的 down time,並不能達到資料庫在資料訪問上的高可用性。
- 可能導致作業的不穩定。未經過考慮的 Ad-hoc Query 可能會要求掃描並返回誇張量級的資料,這會系統帶來很大的負荷,很可能影響作業的正常執行。即使是合理的 Query,在併發數較多的情況下也可能影響作業的執行效率。
- 儲存資料量不能太大。State 執行時主要儲存在 TaskManager 本地記憶體和磁碟,State 過大會造成 TaskManager OOM 或者磁碟空間不足。另外 State 大意味著 checkpoint 大,導致 checkpoint 可能會超時並顯著延長作業恢復時長。
- 只支援最基礎的查詢。State 只能進行最簡單的資料結構查詢,不能像關係型資料庫一樣提供函式等計算能力,也不支援謂詞下推等最佳化技術。
- 只可以讀取,不能修改。State 在執行時只可以被作業本身修改,如果實在要修改 State 只能透過下文的 Savepoint Processor API 來實現。
總體來說,目前 State 代替資料庫的缺點還是遠多於其優點,不過對於某些對資料可用性要求不高的作業來說,使用 State 作為資料庫還是完全合理的。由於定位上的不同,Flink State 在短時間內很難看到可以完全替代資料庫的可能性,但在資料訪問特性上 State 往資料庫方向發展是無需質疑的。
Savepoint Processor API
Savepoint Processor API 是社群最近提出的一個新特性(見 FLIP-42 [3]),用於離線對 State 的 dump 檔案 Savepoint 進行分析、修改或者直接根據資料構建出一個初始的 Savepoint。Savepoint Processor API 屬於 Flink State Evolution 的 State Management。如果說 QueryableState 是 DSL 的話,Flink State Evolution 就是 DML,而 Savepoint Processor API 就是 DML 中最為重要的部分。
Savepoint Processor API 的前身是第三方的 Bravo 專案 [4],主要思路提供 Savepoint 和 DataSet 相互轉換的能力,典型應用是 Savepoint 讀取成 DataSet,在 DataSet 上進行修改,然後再寫為一個新的 Savepoint。這適合用於以下的場景:
- 分析作業 State 以研究其模式和規律
- 排查問題或者審計
- 為新的應用構建的初始 State
- 修改 Savepoint,比如:
- 改變作業最大並行度
- 進行巨大的 Schema 改動
- 修正有問題的 State
Savepoint 作為 State 的 dump 檔案,透過 Savepoint Processor API 可以暴露資料查詢和修改功能,類似於一個離線的資料庫,但 State 的概念和典型關係型資料的概念還是有很多不同,FLIP-43 也對這些差異進行了類比和總結。
首先 Savepoint 是多個 operator 的 state 的物理儲存集合,不同 operator 的 state 是獨立的,這類似於資料庫下不同 namespace 之間的 table。我們可以得到 Savepoint 對應資料庫,單個 operator 對應 Namespace。
DatabaseSavepointNamespaceUidTableState
但就 table 而言,其在 Savepoint 裡對應的概念根據 State 型別的不同而有所差別。State 有 Operator State、Keyed State 和 Broadcast State 三種,其中 Operator State 和 Broadcast State 屬於 non-partitioned state,即沒有按 key 分割槽的 state,而相反地 Keyed State 則屬於 partitioned state。對於 non-partitioned state 來說,state 是一個 table,state 的每個元素即是 table 裡的一行;而對於 partitioned state 來說,同一個 operator 下的所有 state 對應一個 table。這個 table 像是 HBase 一樣有個 row key,然後每個具體的 state 對應 table 裡的一個 column。
舉個例子,假設有一個遊戲玩家得分和線上時長的資料流,我們需要用 Keyed State 來記錄玩家所在組的分數和遊戲時長,用 Operator State 記錄玩家的總得分和總時長。
在一段時間內資料流的輸入如下:
user_iduser_nameuser_groupscore1001PaulA5,0001002CharlotteA3,6001003KateC2,0001004RobertB3,900user_iduser_nameuser_grouptime1001PaulA1,8001002CharlotteA1,2001003KateC6001004RobertB2,000
用 Keyed State ,我們分別註冊 group_score 和 group_time 兩個 MapState 表示組總得分和組總時長,並根據 user_group keyby 資料流之後將兩個指標的累積值更新到 State 裡,得到的表如下:
user_groupgroup_scoregroup_timeA8,6003,000C2,00600B3,9002,000
相對地,假如用 Operator State 來記錄總得分和總時長(並行度設為 1),我們註冊 total_score 和 total_time 兩個 State,得到的表有兩個:
total_score |
------- |
14,500 |
total_time5,600
至此 Savepoint 和 Database 的對應關係應該是比較清晰明瞭的。而對於 Savepoint 來說還有不同的 StateBackend 來決定 State 具體如何持續化,這顯然對應的是資料庫的儲存引擎。在 MySQL 中,我們可以透過簡單的一行命令 ALTER TABLE xxx ENGINE = InnoDB; 來改變儲存引擎,在背後 MySQL 會自動完成繁瑣的格式轉換工作。而對於 Savepoint 來說,由於 StateBackend 各自的儲存格式不相容,目前尚不能方便地切換 StateBackend。為此,社群在不久前建立 FLIP-41 [5] 來進一步完善 Savepoint 的可操作性。
總結
State as Database 是實時計算發展的大趨勢,它並不是要代替資料庫的使用,而是借鑑資料庫領域的經驗擴充 State 介面使其操作方式更接近我們熟悉的資料庫。對於 Flink 而言,State 的外部使用可以分為線上的實時訪問和離線的訪問和修改,分別將由 Queryable State 和 Savepoint Processor API 兩個特性支援。
本文為雲棲社群原創內容,未經允許不得轉載。
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69949601/viewspace-2665190/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- Flink狀態專題:keyed state和Operator state
- Flink State - Backend Improvements and Evolution in 2021
- Flink State Rescale效能優化優化
- 在資料庫表中加一個狀態欄位可以代替軟刪除嗎?資料庫
- 從資料庫到前端,使用 enum 代替 constant number資料庫前端
- Python能代替shell嗎?有什麼特點?Python
- 一文了解Flink State Backends
- thinkphp安裝不成功可能跟資料庫名有關PHP資料庫
- 【Flink入門修煉】2-2 Flink State 狀態
- Apache Flink 特性 - State TTL (Time-to-Live)Apache
- 資料視覺化能否代替資料分析視覺化
- [Flink/CDC/資料整合] 資料增量整合方案:Flink CDC
- Istio 可以代替 Spring Cloud 嗎?SpringCloud
- 亞信安慧AntDB探索資料庫更多可能資料庫
- 【教程】你知道使用Sisulizer本地化資料庫有哪些方法嗎?資料庫
- MySQL資料庫有哪些優勢特點?Linux學習有用嗎MySql資料庫Linux
- 資料庫IO有多慢?資料庫
- 資料庫的使用你可能忽略了這些資料庫
- 你需要託管資料庫嗎?資料庫
- Flink 如何分流資料
- 資料庫審計有什麼用?過等保三級需要嗎?資料庫
- 【資料庫資料恢復】ORACLE常見資料災難&資料恢復可能性資料庫資料恢復Oracle
- 資料庫資料恢復-ORACLE資料庫的常見故障&各種故障下的資料恢復可能性資料庫資料恢復Oracle
- MySQL資料庫SYS CPU高的可能性分析MySql資料庫
- 儘可能地恢復織夢CMS的資料庫資料庫
- 資料庫分類有哪些資料庫
- List<Integer>裡有可能存String型別元素嗎?型別
- 「資料庫、資料庫連線池、資料來源」這些概念你真的理解了嗎?資料庫
- flink 透過繼承RichSinkFunction實現自定義sink,將資料錄入資料庫繼承Function資料庫
- Apache DolphinScheduler支援Flink嗎?Apache
- [提問交流]OT的資料庫引擎可以換成InnoDB資料庫引擎嗎?資料庫
- Error infos:DedeCms錯誤警告:連線資料庫失敗,可能資料庫密碼不對或資料庫伺服器出錯!Error資料庫密碼伺服器
- Error infos: DedeCms錯誤警告:連線資料庫失敗,可能資料庫密碼不對或資料庫伺服器出錯!Error資料庫密碼伺服器
- 用 Django 管理現有資料庫Django資料庫
- python常用的資料庫有哪些?Python資料庫
- Rust的資料DataFrame庫有哪些?Rust
- 你真的會使用資料庫的索引嗎?資料庫索引
- 在Docker中能使用資料庫嗎? | BaeldungDocker資料庫