Oracle Text演算法模型

bit7發表於2008-07-08

Oracle Text scoring Algorithm,Salton‘s Formula

[@more@]

Scoring Algorithm for Word Queries

To calculate a relevance score for a returned document in a word query, Oracle uses an inverse frequency algorithm based on Salton's formula.

Inverse frequency scoring assumes that frequently occurring terms in a document set are noise terms, and so these terms are scored lower. For a document to score high, the query term must occur frequently in the document but infrequently in the document set as a whole.

The following table illustrates Oracle's inverse frequency scoring. The first column shows the number of documents in the document set, and the second column shows the number of terms in the document necessary to score 100.

This table assumes that only one document in the set contains the query term.

Number of Documents in Document SetOccurrences of Term in Document Needed to Score 100

1

34

5

20

10

17

50

13

100

12

500

10

1,000

9

10,000

7

100,000

5

1,000,000

4

The table illustrates that if only one document contained the query term and there were five documents in the set, the term would have to occur 20 times in the document to score 100. Whereas, if there were 1,000,000 documents in the set, the term would have to occur only 4 times in the document to score 100.

Example

You have 5000 documents dealing with chemistry in which the term chemical occurs at least once in every document. The term chemical thus occurs frequently in the document set.

You have a document that contains 5 occurrences of chemical and 5 occurrences of the term hydrogen. No other document contains the term hydrogen. The term hydrogen thus occurs infrequently in the document set.

Because chemical occurs so frequently in the document set, its score for the document is lower with respect to hydrogen, which is infrequent is the document set as a whole. The score for hydrogen is therefore higher than that of chemical. This is so even though both terms occur 5 times in the document.


Note:

Even if the relatively infrequent term hydrogen occurred 4 times in the document, and chemical occurred 5 times in the document, the score for hydrogen might still be higher, because chemical occurs so frequently in the document set (at least 5000 times).


Inverse frequency scoring also means that adding documents that contain hydrogen lowers the score for that term in the document, and adding more documents that do not contain hydrogen raises the score.

來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/46332/viewspace-1006935/,如需轉載,請註明出處,否則將追究法律責任。

相關文章