Model-based learning 簡單實踐

KpHang發表於2022-06-09

從樣本集進行歸納的方法是建立這些樣本的模型,然後使用這個模型進行預測,這叫作基於模型學習(Model-based learning)。

例如,你想知道錢是否能讓人快樂?下面是一個簡單的基於線性模型的案例。

資料來源:https://github.com/ageron/handson-ml

# Python ≥3.5
import sys
assert sys.version_info >= (3, 5)
# Scikit-Learn ≥0.20
import sklearn
assert sklearn.__version__ >= "0.20"

載入資料

# 資料所在路徑設定
import os
datapath = os.path.join("datasets", "lifesat", "")
print(datapath)
datasets/lifesat/

從 OECD 網站下載了 Better Life Index 指數資料,如下:

import numpy as np
import pandas as pd

oecd_bli = pd.read_csv(datapath + "oecd_bli_2015.csv", thousands=',') # thousands 設定千位分隔符;
oecd_bli.head()
LOCATION Country INDICATOR Indicator MEASURE Measure INEQUALITY Inequality Unit Code Unit PowerCode Code PowerCode Reference Period Code Reference Period Value Flag Codes Flags
0 AUS Australia HO_BASE Dwellings without basic facilities L Value TOT Total PC Percentage 0 units NaN NaN 1.1 E Estimated value
1 AUT Austria HO_BASE Dwellings without basic facilities L Value TOT Total PC Percentage 0 units NaN NaN 1.0 NaN NaN
2 BEL Belgium HO_BASE Dwellings without basic facilities L Value TOT Total PC Percentage 0 units NaN NaN 2.0 NaN NaN
3 CAN Canada HO_BASE Dwellings without basic facilities L Value TOT Total PC Percentage 0 units NaN NaN 0.2 NaN NaN
4 CZE Czech Republic HO_BASE Dwellings without basic facilities L Value TOT Total PC Percentage 0 units NaN NaN 0.9 NaN NaN

從 IMF 下載了人均 GDP 資料,如下:

gdp_per_capita = pd.read_csv(datapath + "gdp_per_capita.csv", thousands=',',  # per capita 人均
                             delimiter='\t', encoding='latin1', na_values="n/a")
gdp_per_capita.head()
Country Subject Descriptor Units Scale Country/Series-specific Notes 2015 Estimates Start After
0 Afghanistan Gross domestic product per capita, current prices U.S. dollars Units See notes for: Gross domestic product, curren... 599.994 2013.0
1 Albania Gross domestic product per capita, current prices U.S. dollars Units See notes for: Gross domestic product, curren... 3995.383 2010.0
2 Algeria Gross domestic product per capita, current prices U.S. dollars Units See notes for: Gross domestic product, curren... 4318.135 2014.0
3 Angola Gross domestic product per capita, current prices U.S. dollars Units See notes for: Gross domestic product, curren... 4100.315 2014.0
4 Antigua and Barbuda Gross domestic product per capita, current prices U.S. dollars Units See notes for: Gross domestic product, curren... 14414.302 2011.0

準備資料

This function just merges the OECD's life satisfaction data and the IMF's GDP per capita data. It's a bit too long and boring and it's not specific to Machine Learning, which is why I left it out of the book.

def prepare_country_stats(oecd_bli, gdp_per_capita):
    oecd_bli = oecd_bli[oecd_bli["INEQUALITY"]=="TOT"]
    oecd_bli = oecd_bli.pivot(index="Country", columns="Indicator", values="Value")
    gdp_per_capita.rename(columns={"2015": "GDP per capita"}, inplace=True)
    gdp_per_capita.set_index("Country", inplace=True)
    full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita,
                                  left_index=True, right_index=True)
    full_country_stats.sort_values(by="GDP per capita", inplace=True)
    remove_indices = [0, 1, 6, 8, 33, 34, 35]
    keep_indices = list(set(range(36)) - set(remove_indices))
    return full_country_stats[["GDP per capita", 'Life satisfaction']].iloc[keep_indices]
country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)
country_stats.head()
GDP per capita Life satisfaction
Country
Russia 9054.914 6.0
Turkey 9437.372 5.6
Hungary 12239.894 4.9
Poland 12495.334 5.8
Slovak Republic 15991.736 6.1

視覺化資料

import matplotlib.pyplot as plt
country_stats.plot(kind='scatter', x="GDP per capita", y='Life satisfaction')
plt.show()

png

線性迴歸

import sklearn.linear_model
model = sklearn.linear_model.LinearRegression()

訓練模型

X = np.c_[country_stats["GDP per capita"]]
y = np.c_[country_stats["Life satisfaction"]]
model.fit(X, y)
LinearRegression()

根據模型進行預測

X_new = [[22587]]  # Cyprus' GDP per capita
print(model.predict(X_new)) # outputs [[ 5.96242338]]
[[5.96242338]]

總結

read_csv引數

  • thousands=',' : 千位分隔符;可以將"1,000"轉換為 int 型的1000;
  • delimiter='\t' : sep的替代引數,csv檔案分隔符可能為"," or "\t",可用sublime檢視;
  • encoding='latin1' : 確定正確的編碼方式才能正確解碼;vim this file and set fileencoding即可顯示編碼格式;
  • na_values="n/a" : 缺少值處理,可參考 https://blog.csdn.net/weixin_44520259/article/details/106053987

學習重點是機器學習原理,對於numpy,pandas之類的不熟悉的遇到了就學一下,不需要系統的學習,抓住重點!

相關文章