11.Flink實時專案之支付寬表

選手一號位發表於2022-04-17

支付寬表

支付寬表的目的,最主要的原因是支付表沒有到訂單明細,支付金額沒有細分到商品上, 沒有辦法統計商品級的支付狀況。 所以本次寬表的核心就是要把支付表的資訊與訂單明細關聯上。

解決方案有兩個

一個是把訂單明細表(或者寬表)輸出到 Hbase 上,在支付寬表計算時查詢 hbase, 這相當於把訂單明細作為一種維度進行管理。

一個是用流的方式接收訂單明細,然後用雙流 join 方式進行合併。因為訂單與支付產 生有一定的時差。所以必須用 intervalJoin 來管理流的狀態時間,保證當支付到達時訂 單明細還儲存在狀態中。

支付相關實體類

PaymentInfo.java:支付實體類

import lombok.Data;
import java.math.BigDecimal;
/**
 * @author zhangbaohpu
 * @date 2021/12/25 10:08
 * @desc 支付實體類
 */
@Data
public class PaymentInfo {
    Long id;
    Long order_id;
    Long user_id;
    BigDecimal total_amount;
    String subject;
    String payment_type;
    String create_time;
    String callback_time;
}

PaymentWide.java:支付寬表實體類

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.commons.beanutils.BeanUtils;
import java.lang.reflect.InvocationTargetException;
import java.math.BigDecimal;
/**
 * @author zhangbaohpu
 * @date 2021/12/25 10:10
 * @desc 支付寬表實體類
 */
@Data
@AllArgsConstructor
@NoArgsConstructor
public class PaymentWide {
    Long payment_id;
    String subject;
    String payment_type;
    String payment_create_time;
    String callback_time;
    Long detail_id;
    Long order_id ;
    Long sku_id;
    BigDecimal order_price ;
    Long sku_num ;
    String sku_name;
    Long province_id;
    String order_status;
    Long user_id;
    BigDecimal total_amount;
    BigDecimal activity_reduce_amount;
    BigDecimal coupon_reduce_amount;
    BigDecimal original_total_amount;
    BigDecimal feight_fee;
    BigDecimal split_feight_fee;
    BigDecimal split_activity_amount;
    BigDecimal split_coupon_amount;
    BigDecimal split_total_amount;
    String order_create_time;
    String province_name;//查詢維表得到
    String province_area_code;
    String province_iso_code;
    String province_3166_2_code;
    Integer user_age ;
    String user_gender;
    Long spu_id; //作為維度資料 要關聯進來
    Long tm_id;
    Long category3_id;
    String spu_name;
    String tm_name;
    String category3_name;
    public PaymentWide(PaymentInfo paymentInfo, OrderWide orderWide){
        mergeOrderWide(orderWide);
        mergePaymentInfo(paymentInfo);
    }
    public void mergePaymentInfo(PaymentInfo paymentInfo ) {
        if (paymentInfo != null) {
            try {
                BeanUtils.copyProperties(this,paymentInfo);
                payment_create_time=paymentInfo.create_time;
                payment_id = paymentInfo.id;
            } catch (IllegalAccessException e) {
                e.printStackTrace();
            } catch (InvocationTargetException e) {
                e.printStackTrace();
            }
        }
    }
    public void mergeOrderWide(OrderWide orderWide ) {
        if (orderWide != null) {
            try {
                BeanUtils.copyProperties(this,orderWide);
                order_create_time=orderWide.create_time;
            } catch (IllegalAccessException e) {
                e.printStackTrace();
            } catch (InvocationTargetException e) {
                e.printStackTrace();
            }
        }
    }
}

支付寬表主程式

目前還沒有任何計算,仍然放在dwm層

在dwm包下建立PaymentWideApp.java任務類

import cn.hutool.core.date.DatePattern;
import cn.hutool.core.date.DateUnit;
import cn.hutool.core.date.DateUtil;
import com.alibaba.fastjson.JSON;
import com.zhangbao.gmall.realtime.bean.OrderWide;
import com.zhangbao.gmall.realtime.bean.PaymentInfo;
import com.zhangbao.gmall.realtime.bean.PaymentWide;
import com.zhangbao.gmall.realtime.utils.MyKafkaUtil;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.util.Collector;
​
import java.time.Duration;
​
/**
 * @author zhangbaohpu
 * @date 2021/12/25 10:16
 * @desc 支付寬表
 */
public class PaymentWideApp {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //新增並行度
        env.setParallelism(4);
​
        //設定檢查點
//        env.enableCheckpointing(5000, CheckpointingMode.EXACTLY_ONCE);
//        env.getCheckpointConfig().setCheckpointTimeout(60000);
//        env.setStateBackend(new FsStateBackend("hdfs://hadoop101:9000/gmall/flink/checkpoint/paymentWide"));
//        //指定哪個使用者讀取hdfs檔案
//        System.setProperty("HADOOP_USER_NAME","zhangbao");
​
        //設定kafka主題及消費者組
        String paymentInfoTopic = "dwd_payment_info";
        String orderWideTopic = "dwm_order_wide";
        String paymentWideTopic = "dwm_payment_wide";
        String paymentWideGroup = "paymentWideGroup";
​
        //獲取支付資訊
        FlinkKafkaConsumer<String> paymentInfo = MyKafkaUtil.getKafkaSource(paymentInfoTopic, paymentWideGroup);
        DataStreamSource<String> paymentInfoJsonStrDs = env.addSource(paymentInfo);
        //獲取訂單寬表資訊
        FlinkKafkaConsumer<String> orderWide = MyKafkaUtil.getKafkaSource(orderWideTopic, paymentWideGroup);
        DataStreamSource<String> orderWideJsonStrDs = env.addSource(orderWide);
​
        //轉換格式
        SingleOutputStreamOperator<PaymentInfo> paymentJsonDs = paymentInfoJsonStrDs.map(paymentInfoStr -> JSON.parseObject(paymentInfoStr, PaymentInfo.class));
        SingleOutputStreamOperator<OrderWide> orderWideJsonDs = orderWideJsonStrDs.map(orderWideStr -> JSON.parseObject(orderWideStr, OrderWide.class));
​
        paymentJsonDs.print("payment info >>>");
        orderWideJsonDs.print("order wide >>>");
​
        //指定事件時間欄位
        SingleOutputStreamOperator<PaymentInfo> paymentInfoWithWaterMarkDs = paymentJsonDs.assignTimestampsAndWatermarks(
            WatermarkStrategy.<PaymentInfo>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                .withTimestampAssigner(new SerializableTimestampAssigner<PaymentInfo>() {
                    @Override
                    public long extractTimestamp(PaymentInfo paymentInfo, long l) {
                        return DateUtil.parse(paymentInfo.getCallback_time(), DatePattern.NORM_DATETIME_PATTERN).getTime();
                    }
                })
        );
        SingleOutputStreamOperator<OrderWide> orderWideWithWaterMarkDs = orderWideJsonDs.assignTimestampsAndWatermarks(
            WatermarkStrategy.<OrderWide>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                .withTimestampAssigner(new SerializableTimestampAssigner<OrderWide>() {
                    @Override
                    public long extractTimestamp(OrderWide orderWide, long l) {
                        return DateUtil.parse(orderWide.getCreate_time(), DatePattern.NORM_DATETIME_PATTERN).getTime();
                    }
                })
        );
​
        //分組
        KeyedStream<PaymentInfo, Long> paymentInfoKeyedDs = paymentInfoWithWaterMarkDs.keyBy(payInfoObj -> payInfoObj.getOrder_id());
        KeyedStream<OrderWide, Long> orderWideKeyedDs = orderWideWithWaterMarkDs.keyBy(orderWideObj -> orderWideObj.getOrder_id());
​
        paymentInfoKeyedDs.print("paymentInfoKeyedDs >>>");
        orderWideKeyedDs.print("orderWideKeyedDs >>>");
​
        //雙流join,用支付資料關聯訂單資料
        SingleOutputStreamOperator<PaymentWide> paymentWideObjDs = paymentInfoKeyedDs.intervalJoin(orderWideKeyedDs)
                .between(Time.seconds(-1800), Time.seconds(1800))
                .process(new ProcessJoinFunction<PaymentInfo, OrderWide, PaymentWide>() {
                    @Override
                    public void processElement(PaymentInfo paymentInfo, OrderWide orderWide, ProcessJoinFunction<PaymentInfo, OrderWide, PaymentWide>.Context context, Collector<PaymentWide> collector) throws Exception {
                        System.out.println(paymentInfo);
                        System.out.println(orderWide);
                        collector.collect(new PaymentWide(paymentInfo, orderWide));
                    }
                });
        //將資料流轉換為json
        SingleOutputStreamOperator<String> paymentWideDs = paymentWideObjDs.map(paymentWide -> JSON.toJSONString(paymentWide));
        paymentWideDs.print("payment wide json >>> ");
        //傳送到kafka
        FlinkKafkaProducer<String> kafkaSink = MyKafkaUtil.getKafkaSink(paymentWideTopic);
        paymentWideDs.addSink(kafkaSink);
​
        try {
            env.execute("payment wide task");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

到這裡,支付寬表的操作就完成了。

專案地址:https://github.com/zhangbaohpu/gmall-flink-parent/tree/master/gmall-realtime

總結

DWM 層部分的程式碼主要的責任,是通過計算把一種明細轉變為另一種明細以應對後續的統計。學完本階段內容要求掌握

  • 學會利用狀態(state)進行去重操作。(需求:UV 計算)

  • 學會利用 CEP 可以針對一組資料進行篩選判斷。需求:跳出行為計算

  • 學會使用 intervalJoin 處理流 join

  • 學會處理維度關聯,並通過快取和非同步查詢對其進行效能優化。

更多請在某公號平臺搜尋:選手一號位,本文編號:1011,回覆即可獲取。

相關文章