mutex 的實現思想
mutex 主要有兩個 method: Lock()
和 Unlock()
Lock()
可以通過一個 CAS 操作來實現
func (m *Mutex) Lock() {
for !atomic.CompareAndSwapUint32(&m.locked, 0, 1) {
}
}
func (m *Mutex) Unlock() {
atomic.StoreUint32(&m.locked, 0)
}
Lock() 一直進行 CAS 操作,比較耗 CPU。因此帶來了一個優化:如果協程在一段時間內搶不到鎖,可以把該協程掛到一個等待佇列上,Unlock()
的一方除了更新鎖的狀態,還需要從等待佇列中喚醒一個協程。
但是這個優化會存在一個問題,如果一個協程從等待佇列中喚醒後再次搶鎖時,鎖已經被一個新來的協程搶走了,它就只能再次被掛到等待佇列中,接著再被喚醒,但又可能搶鎖失敗...... 這個悲催的協程可能會一直搶不到鎖,由此產生飢餓 (starvation) 現象。
飢餓現象會導致尾部延遲 (Tail Latency) 特別高。什麼是尾部延遲?用一句話來說就是:最慢的特別慢!
如果共有 1000 個協程,假設 999 個協程可以在 1ms 內搶到鎖,雖然平均時間才 2ms,但是最慢的那個協程卻需要 1s 才搶到鎖,這就是尾部延遲。
golang 中 mutex 的實現思想
➜ go version
go version go1.16.5 darwin/arm64
本次閱讀的 go 原始碼版本為 go1.16.5。
golang 標準庫裡的 mutex 避免了飢餓現象的發生,先大致介紹一下 golang 的加鎖和解鎖流程,對後面的原始碼閱讀有幫助。
鎖有兩種 mode,分別是 normal mode 和 starvation mode。初始為 normal mode,當一個協程來搶鎖時,依舊是做 CAS 操作,如果成功了,就直接返回,如果沒有搶到鎖,它會做一定次數的自旋操作,等待鎖被釋放,在自旋操作結束後,如果鎖依舊沒有被釋放,那麼這個協程就會被放到等待佇列中。如果一個處於等待佇列中的協程一直都沒有搶到鎖,mutex 就會從 normal mode 變成 starvation mode,在 starvation mode 下,當有協程釋放鎖時,這個鎖會被直接交給等待佇列中的協程,從而避免產生飢餓執行緒。
除此之外,golang 還有一點小優化,當有協程正在自旋搶鎖時,Unlock()
的一方不會從等待佇列中喚醒協程,因為即使喚醒了,被喚醒的協程也搶不過正在自旋的協程。
下面正式開始閱讀原始碼。
mutex 的結構以及一些 const 常量值
type Mutex struct {
state int32
sema uint32
}
const (
mutexLocked = 1 << iota // mutex is locked
mutexWoken
mutexStarving
mutexWaiterShift = iota // 3
// Mutex fairness.
//
// Mutex can be in 2 modes of operations: normal and starvation.
// In normal mode waiters are queued in FIFO order, but a woken up waiter
// does not own the mutex and competes with new arriving goroutines over
// the ownership. New arriving goroutines have an advantage -- they are
// already running on CPU and there can be lots of them, so a woken up
// waiter has good chances of losing. In such case it is queued at front
// of the wait queue. If a waiter fails to acquire the mutex for more than 1ms,
// it switches mutex to the starvation mode.
//
// In starvation mode ownership of the mutex is directly handed off from
// the unlocking goroutine to the waiter at the front of the queue.
// New arriving goroutines don't try to acquire the mutex even if it appears
// to be unlocked, and don't try to spin. Instead they queue themselves at
// the tail of the wait queue.
//
// If a waiter receives ownership of the mutex and sees that either
// (1) it is the last waiter in the queue, or (2) it waited for less than 1 ms,
// it switches mutex back to normal operation mode.
//
// Normal mode has considerably better performance as a goroutine can acquire
// a mutex several times in a row even if there are blocked waiters.
// Starvation mode is important to prevent pathological cases of tail latency.
starvationThresholdNs = 1e6
)
mutex 的狀態是通過 state
來維護的,state
有 32 個 bit。
前面 29 個 bit 用來記錄當前等待佇列中有多少個協程在等待,將等待佇列的協程數量記錄為 waiterCount。
state >> mutexWaiterShift // mutexWaiterShift 的值為 3
第 30 個 bit 表示當前 mutex 是否處於 starvation mode,將這個 bit 記為 starvationFlag。
state & mutexStarving
第 31 個 bit 表示當前是否有協程正在 (第一次) 自旋,將這個 bit 記為 wokenFlag,woken 的意思也就是醒著,代表它不在等待佇列上睡眠。
state & mutexWoken
第 32 個 bit 表示當前鎖是否被鎖了 (感覺有點繞口哈哈) ,將這個 bit 記為 lockFlag。
state & mutexLocked
用一個圖來表示這些 bit
0 0 0 0 0 0 0 0 ... 0 0 0 0
| | |
waiterCount starvationFlag wokenFlag lockFlag
sema
是一個訊號量,它會被用來關聯一個等待佇列。
分別討論幾種 case 下,程式碼的執行情況。
Mutex 沒有被鎖住,第一個協程來拿鎖
func (m *Mutex) Lock() {
// Fast path: grab unlocked mutex.
if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
// ...
return
}
// Slow path (outlined so that the fast path can be inlined)
m.lockSlow()
}
在 Mutex 沒有被鎖住時,state 的值為 0,此時第一個協程來拿鎖時,由於 state 的值為 0,因此 CAS 操作會成功,CAS 操作之後的 state 的值變成 1 (lockFlag = 1) ,然後 return 掉,不會進入到 m.lockSlow()
裡面。
Mutex 僅被協程 A 鎖住,沒有其他協程搶鎖,協程 A 釋放鎖
func (m *Mutex) Unlock() {
// ...
// Fast path: drop lock bit.
new := atomic.AddInt32(&m.state, -mutexLocked)
if new != 0 {
// Outlined slow path to allow inlining the fast path.
// To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.
m.unlockSlow(new)
}
}
緊接上面,state 的值為 1,AddInt32(m.state,-1)
之後,state 的值變成了 0 (lockFlag = 0) ,new 的值為 0,然後就返回了。
Mutex 已經被協程 A 鎖住,協程 B 來拿鎖
func (m *Mutex) Lock() {
// Fast path: grab unlocked mutex.
if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
// ...
return
}
// Slow path (outlined so that the fast path can be inlined)
m.lockSlow()
}
因為 state 的值不為 0,CompareAndSwapInt32 會返回 false,所以會進入到 lockSlow() 裡面
lockSlow()
首先看一下 lockSlow() 這個方法的全貌
func (m *Mutex) lockSlow() {
var waitStartTime int64
starving := false
awoke := false
iter := 0
old := m.state
for {
// Don't spin in starvation mode, ownership is handed off to waiters
// so we won't be able to acquire the mutex anyway.
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
// Active spinning makes sense.
// Try to set mutexwokenFlag to inform Unlock
// to not wake other blocked goroutines.
if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
awoke = true
}
runtime_doSpin()
iter++
old = m.state
continue
}
new := old
// Don't try to acquire starving mutex, new arriving goroutines must queue.
if old&mutexStarving == 0 {
new |= mutexLocked
}
if old&(mutexLocked|mutexStarving) != 0 {
new += 1 << mutexWaiterShift
}
// The current goroutine switches mutex to starvation mode.
// But if the mutex is currently unlocked, don't do the switch.
// Unlock expects that starving mutex has waiters, which will not
// be true in this case.
if starving && old&mutexLocked != 0 {
new |= mutexStarving
}
if awoke {
// The goroutine has been woken from sleep,
// so we need to reset the flag in either case.
if new&mutexWoken == 0 {
throw("sync: inconsistent mutex state")
}
new &^= mutexWoken
}
if atomic.CompareAndSwapInt32(&m.state, old, new) {
if old&(mutexLocked|mutexStarving) == 0 {
break // locked the mutex with CAS
}
// If we were already waiting before, queue at the front of the queue.
queueLifo := waitStartTime != 0
if waitStartTime == 0 {
waitStartTime = runtime_nanotime()
}
runtime_SemacquireMutex(&m.sema, queueLifo, 1)
starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
old = m.state
if old&mutexStarving != 0 {
// If this goroutine was woken and mutex is in starvation mode,
// ownership was handed off to us but mutex is in somewhat
// inconsistent state: mutexLocked is not set and we are still
// accounted as waiter. Fix that.
if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
throw("sync: inconsistent mutex state")
}
delta := int32(mutexLocked - 1<<mutexWaiterShift)
if !starving || old>>mutexWaiterShift == 1 {
// Exit starvation mode.
// Critical to do it here and consider wait time.
// Starvation mode is so inefficient, that two goroutines
// can go lock-step infinitely once they switch mutex
// to starvation mode.
delta -= mutexStarving
}
atomic.AddInt32(&m.state, delta)
break
}
awoke = true
iter = 0
} else {
old = m.state
}
}
if race.Enabled {
race.Acquire(unsafe.Pointer(m))
}
}
第一步: doSpin (空轉)
進入 for 迴圈後,會執行一個判斷
for {
// Don't spin in starvation mode, ownership is handed off to waiters
// so we won't be able to acquire the mutex anyway.
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
// Active spinning makes sense.
// Try to set mutexwokenFlag to inform Unlock
// to not wake other blocked goroutines.
if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
awoke = true
}
runtime_doSpin()
iter++
old = m.state
continue
}
// ...
}
runtime_canSpin(iter)
的作用是根據 iter 的值判斷自否應該自旋下去。 (這個方法的實現可以在後面看到)
最初的幾次判斷,由於 iter 的值為 0,runtime_canSpin(iter) 會返回 true。因此
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter)
這個判斷會一直通過,由於 old>>mutexWaiterShift = 0
(waiterCount = 0) ,不滿足第二個判斷的條件,因此不會執行 CAS 操作和 awoke = true
。
接著就是執行 runtime_doSpin()
了,runtime_doSpin()
會進行一些空迴圈,消耗了一下 CPU 時間,然後就通過 continue
進入到下一次迴圈了。 (runtime_doSpin
具體實現也可以在後面看到)
看到看到,這段程式碼不是用來搶鎖的,而是用來等鎖變成 unlock 狀態的,它會空轉一定的次數,期待在空轉的過程中,鎖被其他的協程釋放。
runtime_doSpin()
// src/runtime/lock_sema.go
const active_spin_cnt = 30
//go:linkname sync_runtime_doSpin sync.runtime_doSpin
//go:nosplit
func sync_runtime_doSpin() {
procyield(active_spin_cnt)
}
# /src/runtime/asm_amd64.s
TEXT runtime·procyield(SB),NOSPLIT,$0-0
MOVL cycles+0(FP), AX
again:
PAUSE
SUBL $1, AX
JNZ again
RET
procyield()
會迴圈執行 PAUSE
指令。
runtime_canSpin()
runtime_canSpin() 的實現在 src/runtime/proc.go 裡面,裡面的判斷比較多,但是我們只需要關注 i >= active_spin
這一個判斷就行。
const active_spin = 4
// Active spinning for sync.Mutex.
//go:linkname sync_runtime_canSpin sync.runtime_canSpin
//go:nosplit
func sync_runtime_canSpin(i int) bool {
// sync.Mutex is cooperative, so we are conservative with spinning.
// Spin only few times and only if running on a multicore machine and
// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
// As opposed to runtime mutex we don't do passive spinning here,
// because there can be work on global runq or on other Ps.
if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
return false
}
if p := getg().m.p.ptr(); !runqempty(p) {
return false
}
return true
}
一個小插曲
在利用斷點來 debug 時,發現沒辦法 watch sync_runtime_canSpin() 內引用的一些全域性變數,例如
active_spin
,ncpu
,sched.npidle
這些,所以我就大力出奇跡,強行修改原始碼在裡面宣告瞭幾個區域性變數,這下可以通過 watch 區域性變數來得知全域性變數的值了 (機智如我哈哈) 。func sync_runtime_canSpin(i int) bool { local_active_spin := active_spin local_ncpu := ncpu local_gomaxprocs := gomaxprocs npidle := sched.npidle nmspinning := sched.nmspinning if i >= local_active_spin || local_ncpu <= 1 ||local_gomaxprocs <= int32(npidle+nmspinning)+1 { return false } if p := getg().m.p.ptr(); !runqempty(p) { return false } return true }
第二步: 根據舊狀態來計算新狀態
new := old
// Don't try to acquire starving mutex, new arriving goroutines must queue.
if old&mutexStarving == 0 {
new |= mutexLocked
}
if old&(mutexLocked|mutexStarving) != 0 {
new += 1 << mutexWaiterShift
}
// The current goroutine switches mutex to starvation mode.
// But if the mutex is currently unlocked, don't do the switch.
// Unlock expects that starving mutex has waiters, which will not
// be true in this case.
if starving && old&mutexLocked != 0 {
new |= mutexStarving
}
if awoke {
// The goroutine has been woken from sleep,
// so we need to reset the flag in either case.
// ...
new &^= mutexWoken
}
這一段程式碼,是根據 old state 來計算 new state,有 4 個操作
- set lockFlag:
new |= mutexLocked
- 增加 waiterCount:
new += 1 << mutexWaiterShift
- set starvationFlag:
new |= mutexStarving
- clear wokenFlag:
new &^= mutexWoken
由於在這裡我們只討論 ”Mutex 已經被協程 A 鎖住,協程 B 來拿鎖“ 這種情況,可以分為兩種 case
- case1: 在第一步自旋的過程中,鎖已經被釋放了,此時 old state =
000000...000
(所有 bit 都為 0) ,經過這四個操作的洗禮後,lockFlag 被設定成了 1。 - case2: 在第一步自旋結束後,鎖還沒有被釋放,即 old state 此時為
00000000...001
(僅 lockFlag 為 1),經過這四個操作的洗禮後,waiterCounter = 1,lockFlag 也為 1。
第三步: 更新 state (搶鎖)
if atomic.CompareAndSwapInt32(&m.state, old, new) {
if old&(mutexLocked|mutexStarving) == 0 {
break // locked the mutex with CAS
}
// ...
} else {
old = m.state
}
這一步會通過 CAS 操作將 mutex.state
更新為我們剛剛計算得到的 new state
。如果 CAS 成功,且 old 處於未上鎖的狀態時,就直接利用 break 退出迴圈返回了 (也就是上面的 case1) 。如果 CAS 失敗,將會更新 old state 的值,進行下一次迴圈,再重複一二三步;
如果是 case2 的話,情況會稍微複雜一點
if atomic.CompareAndSwapInt32(&m.state, old, new) {
// ...
// If we were already waiting before, queue at the front of the queue.
queueLifo := waitStartTime != 0
if waitStartTime == 0 {
waitStartTime = runtime_nanotime()
}
runtime_SemacquireMutex(&m.sema, queueLifo, 1)
// ...
}
主要就是通過 runtime_SemacquireMutex()
把自己放進了等待佇列裡面,之後 runtime 不會再排程該協程,直到協程被喚醒。
關於 runtime_SemacquireMutex()
的實現,我暫時就不追究下去了,再追究下去就沒完沒了啦。
Mutex 被協程 A 鎖住,協程 B 來搶鎖但失敗被放入等待佇列,此時協程 A 釋放鎖
func (m *Mutex) Unlock() {
// Fast path: drop lock bit.
new := atomic.AddInt32(&m.state, -mutexLocked)
if new != 0 {
// Outlined slow path to allow inlining the fast path.
// To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.
m.unlockSlow(new)
}
}
緊接上回,最初 state 的值為 00000000000...0001001
(waiterCount = 1, lockFlag = 1)。執行完 AddInt32(&m.state, -mutexLocked)
後,變成了 0000...001000
(waiterCount = 1) ,new
的值也為 0000...001000
,接著就進入到 unlockSlow
裡面了。
unlockSlow()
看看 unlockSlow()
的全貌
func (m *Mutex) unlockSlow(new int32) {
if (new+mutexLocked)&mutexLocked == 0 {
throw("sync: unlock of unlocked mutex")
}
if new&mutexStarving == 0 {
old := new
for {
// If there are no waiters or a goroutine has already
// been woken or grabbed the lock, no need to wake anyone.
// In starvation mode ownership is directly handed off from unlocking
// goroutine to the next waiter. We are not part of this chain,
// since we did not observe mutexStarving when we unlocked the mutex above.
// So get off the way.
if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
return
}
// Grab the right to wake someone.
new = (old - 1<<mutexWaiterShift) | mutexWoken
if atomic.CompareAndSwapInt32(&m.state, old, new) {
runtime_Semrelease(&m.sema, false, 1)
return
}
old = m.state
}
} else {
// Starving mode: handoff mutex ownership to the next waiter, and yield
// our time slice so that the next waiter can start to run immediately.
// Note: mutexLocked is not set, the waiter will set it after wakeup.
// But mutex is still considered locked if mutexStarving is set,
// so new coming goroutines won't acquire it.
runtime_Semrelease(&m.sema, true, 1)
}
}
此時 old >> mutexWaiterShift = 0000...0001
≠ 0, 所以不會直接返回
old := new
for {
// If there are no waiters or a goroutine has already
// been woken or grabbed the lock, no need to wake anyone.
// In starvation mode ownership is directly handed off from unlocking
// goroutine to the next waiter. We are not part of this chain,
// since we did not observe mutexStarving when we unlocked the mutex above.
// So get off the way.
if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
return
}
// Grab the right to wake someone.
new = (old - 1<<mutexWaiterShift) | mutexWoken
if atomic.CompareAndSwapInt32(&m.state, old, new) {
runtime_Semrelease(&m.sema, false, 1)
return
}
old = m.state
}
接著計算 new = 0000...1000
- 0000...1000
= 0000...0000
,waiterCount 由 1 變成了 0。之後進行 CAS 操作,如果 CAS 成功,則從等待佇列中喚醒一個 goroutine。
Mutex 被協程 A 鎖住,協程 B 來搶鎖但失敗被放入等待佇列,此時協程 A 釋放鎖,協程 B 被喚醒
讓我們會視線切到 lockSlow
的後半截。
const starvationThresholdNs = 1e6
if atomic.CompareAndSwapInt32(&m.state, old, new) {
// ...
runtime_SemacquireMutex(&m.sema, queueLifo, 1)
starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
old = m.state
// ...
iter = 0
}
當協程 B 從 runtime_SemacquireMutex
處醒來後,會根據該協程的等待的時間來判斷是否飢餓了。這裡我們先假設此時還沒有飢餓,後面會詳細討論飢餓時的情況。之後會將 iter
重置為 0,接著就進行下一次的迴圈了,由於 iter
已經被重置為 0 了,所以在下一次迴圈時,sync_runtime_doSpin(iter)
會返回 true
。
由於此時 state 已經變成了 0 了,所以在下一次迴圈裡可以暢通無阻的拿到鎖。
飢餓情況下的解鎖行為: starvationFlag 的作用
設想這樣一種情況:goroutine A 拿到鎖,goroutine B 搶鎖失敗,被放入等待佇列。goroutine A 釋放鎖,goroutine B 被喚醒,但是正當它搶鎖時,鎖被新來的 goroutine C 搶走了... 連續好幾次,每當 goroutine B 要搶鎖時,鎖都被其他協程搶先一步拿走。直到某一次,goroutine B 再次被喚醒後執行
starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
它就進入飢餓模式 (starvation mode) 啦!
// The current goroutine switches mutex to starvation mode.
// But if the mutex is currently unlocked, don't do the switch.
// Unlock expects that starving mutex has waiters, which will not
// be true in this case.
if starving && old&mutexLocked != 0 {
new |= mutexStarving
}
之後通過 CAS 操作將飢餓標誌設定到了 mutex.state
裡面,然後它就又被放到等待佇列中了。
atomic.CompareAndSwapInt32(&m.state, old, new)
Unlock()
視角切換到 Unlock() 這一邊
func (m *Mutex) Unlock() {
// ...
// Fast path: drop lock bit.
new := atomic.AddInt32(&m.state, -mutexLocked)
if new != 0 {
// Outlined slow path to allow inlining the fast path.
// To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.
m.unlockSlow(new)
}
}
func (m *Mutex) unlockSlow(new int32) {
// ...
if new&mutexStarving == 0 {
// ...
for {
// ...
if atomic.CompareAndSwapInt32(&m.state, old, new) {
runtime_Semrelease(&m.sema, false, 1)
return
}
// ...
}
} else {
// Starving mode: handoff mutex ownership to the next waiter, and yield
// our time slice so that the next waiter can start to run immediately.
// Note: mutexLocked is not set, the waiter will set it after wakeup.
// But mutex is still considered locked if mutexStarving is set,
// so new coming goroutines won't acquire it.
runtime_Semrelease(&m.sema, true, 1)
}
}
在 unlockSlow()
中,此時 new&mutexStarving != 0
,所以會直接進入到 else 分支內,呼叫 runtime_Semrelease()
方法,但要注意 else 分支內 runtime_Semrelease()
的引數和 if 分支的引數不一樣,在這裡 runtime_Semrelease(&m.sema, true, 1)
起到的作用是喚醒了等待佇列中的第一個協程並立馬排程該協程 (runtime_Semrelease()
方法的詳解在後面 )。
同時正如註釋所說,在 Unlock()
中由於進行了 atomic.AddInt32(&m.state, -mutexLocked)
操作,所以 mutex.state 的 lockFlag 是為 0 的,但是沒關係,starvationFlag 是為 1 的,所以會依舊被認為是鎖住的狀態。
Lock()
func (m *Mutex) Lock() {
// ...
m.lockSlow()
}
func (m *Mutex) lockSlow() {
// ...
for {
// ...
if atomic.CompareAndSwapInt32(&m.state, old, new) {
// ...
runtime_SemacquireMutex(&m.sema, queueLifo, 1)
// ...
old = m.state
if old&mutexStarving != 0 {
// If this goroutine was woken and mutex is in starvation mode,
// ownership was handed off to us but mutex is in somewhat
// inconsistent state: mutexLocked is not set and we are still
// accounted as waiter. Fix that.
// ...
delta := int32(mutexLocked - 1<<mutexWaiterShift)
if !starving || old>>mutexWaiterShift == 1 {
// Exit starvation mode.
// Critical to do it here and consider wait time.
// Starvation mode is so inefficient, that two goroutines
// can go lock-step infinitely once they switch mutex
// to starvation mode.
delta -= mutexStarving
}
atomic.AddInt32(&m.state, delta)
break
}
awoke = true
iter = 0
} else {
old = m.state
}
}
// ...
}
視角再次切換到 Lock()
這邊,飢餓的 goroutine 被喚醒並排程後,首先執行 old = m.state
, 此時 old 的 starvationFlag = 1。
之後就正如註釋所說,它會嘗試修復 mutex.state 的"不一致" (inconsistent) 狀態。
修復工作主要做了三件事情:
-
在 starvation mode 下的 Unlock() 沒有將 waitterCount - 1, 所以這裡需要給 mutexWaiter 減 1
-
將 state 的 locked flag 置為 1
-
如果該 goroutine 沒有飢餓或者是等待佇列中的最後一個 goroutine 的話,清理 starvationFlag
這三件事情通過 atomic.AddInt32(&m.state, delta)
一步到位。
runtime_Semrelease()
// Semrelease atomically increments *s and notifies a waiting goroutine
// if one is blocked in Semacquire.
// It is intended as a simple wakeup primitive for use by the synchronization
// library and should not be used directly.
// If handoff is true, pass count directly to the first waiter.
// skipframes is the number of frames to omit during tracing, counting from
// runtime_Semrelease's caller.
func runtime_Semrelease(s *uint32, handoff bool, skipframes int)
handoff 就是傳球的意思,handoff 為 false 時,僅僅喚醒等待佇列中第一個協程,但是不會立馬排程該協程;當 handoff 為 true 時,會立馬排程被喚醒的協程,此外,當 handoff = true 時,被喚醒的協程會繼承當前協程的時間片。具體例子,假設每個 goroutine 的時間片為 2ms,gorounte A 已經執行了 1ms,假設它通過 runtime_Semrelease(handoff = true) 喚醒了 goroutine B,則 goroutine B 剩餘的時間片為 2 - 1 = 1ms。
飢餓模式下新來的 goroutine 的加鎖行為: starvationFlag 的作用
如果在飢餓模式下,有新的 goroutine 來請求鎖,它會執行下面這些步驟
func (m *Mutex) lockSlow() {
// ...
old := m.state
for {
// Don't spin in starvation mode, ownership is handed off to waiters
// so we won't be able to acquire the mutex anyway.
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
// ...
runtime_doSpin()
}
new := old
// Don't try to acquire starving mutex, new arriving goroutines must queue.
if old&mutexStarving == 0 {
new |= mutexLocked
}
if old&(mutexLocked|mutexStarving) != 0 {
new += 1 << mutexWaiterShift
}
// ...
if atomic.CompareAndSwapInt32(&m.state, old, new) {
// ..
runtime_SemacquireMutex(&m.sema, queueLifo, 1)
// ...
} else {
// ...
}
}
// ...
}
由於 old&(mutexLocked|mutexStarving) != mutexLocked
,所以它不會自旋。
由於 old&mutexStarving != 0
,所以它不會 set lockFlag。
由於 old&(mutexLocked|mutexStarving) != 0
,所以它會 增加 waiterCount。
可以看到,它實際上就做了增加 waiterCount
這一個操作,之後通過 CAS 更新 state 的狀態,更新完成之後就跑去等待佇列睡覺去了。
因此在飢餓狀態下,新的來爭搶鎖的 goroutine 是不會去搶鎖 (set lockFlag) 的,它們只會登記一下 (waiterCount + 1) ,然後乖乖加入到等待佇列裡面。
當有協程正在自旋時的解鎖行為: wokenFlag 的作用
wokenFlag 是在 lockSlow() 裡面被設定的,wokenFlag 為 1 時,表示此時有協程正在進行自旋。
func (m *Mutex) lockSlow() {
starving := false
awoke := false
iter := 0
old := m.state
for {
// Don't spin in starvation mode, ownership is handed off to waiters
// so we won't be able to acquire the mutex anyway.
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
// Active spinning makes sense.
// Try to set mutexwokenFlag to inform Unlock
// to not wake other blocked goroutines.
if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
awoke = true
}
runtime_doSpin()
iter++
old = m.state
continue
}
// ...
if atomic.CompareAndSwapInt32(&m.state, old, new) {
// ...
runtime_SemacquireMutex(&m.sema, queueLifo, 1)
// ...
awoke = true
iter = 0
}
// ...
}
// ...
}
當一個新來的協程 (從未被放到等待佇列中) 在第一次自旋時,wokenFlag 的設定邏輯為:
if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
awoke = true
}
但是當協程從等待佇列中被喚醒後自旋時,卻 lockSlow()
找不到設定 wokenFlag 的邏輯,為何?因為這段邏輯被放到了 unlockSlow
裡面了。
視線切換到 unlockSlow()
那一邊
func (m *Mutex) unlockSlow(new int32) {
// ...
if new&mutexStarving == 0 {
old := new
for {
// If there are no waiters or a goroutine has already
// been woken or grabbed the lock, no need to wake anyone.
// In starvation mode ownership is directly handed off from unlocking
// goroutine to the next waiter. We are not part of this chain,
// since we did not observe mutexStarving when we unlocked the mutex above.
// So get off the way.
if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
// 當 mutexwokenFlag 被設定時,會直接 return
// 不會去等待佇列喚醒 goroutine
return
}
// Grab the right to wake someone.
// 這個地方會設定 wokenFlag 哦
new = (old - 1<<mutexWaiterShift) | mutexWoken
if atomic.CompareAndSwapInt32(&m.state, old, new) {
runtime_Semrelease(&m.sema, false, 1)
return
}
old = m.state
}
} else {
// ...
}
}
可以看到,當有協程正在自旋時 (wokenFlag = 1) ,不會從等待佇列喚醒協程,這樣就避免了等待佇列上的協程加入競爭,當然,正在自旋中的協程之間彼此之間還是會競爭的;如果 wokenFlag = 0,則會從等待佇列中喚醒一個協程,在喚醒之前會將 wokenFlag 設定為 1,這樣協程被喚醒後就不用再去設定 wokenFlag 了,妙呀!
為什麼當有協程在自旋時,不要去等待佇列中喚醒協程呢?協程從被喚醒到被排程 (在 CPU 上面執行) 是要花時間的,等真正自旋時 mutex 早就被搶走了。
協程從等待佇列被喚醒後如果還是沒有搶到鎖,會被放到佇列首部還是尾部?
但是是頭部,程式碼如下:
// If we were already waiting before, queue at the front of the queue.
queueLifo := waitStartTime != 0
if waitStartTime == 0 {
waitStartTime = runtime_nanotime()
}
runtime_SemacquireMutex(&m.sema, queueLifo, 1)
複雜情景分析
基於上面的邏輯來分析一下複雜的邏輯吧!
假設有協程 g1,g2,g3,g4,g5,g6, 共同爭搶一把鎖 m
一開始 g1 拿到鎖
owner: g1 waitqueue: null
g2 開始搶鎖,沒有搶到,被放到等待佇列
owner: g1 waitqueue: g2
g1 釋放鎖,g2 從等待佇列中被喚醒
owner: null waitqueue: null
此時 g3 也開始搶鎖,g2 沒有搶過,又被放回等待佇列
owner: g3 waitqueue: g2
g4 開始搶鎖,沒有搶到,被放到等待佇列
owner: g3 waitqueue: g2, g4
g3 釋放鎖,g2 被喚醒
owner: null waitqueue: g4
此時 g5 開始搶鎖,g2 沒有搶過,又被放回等待佇列首部
owner: g5 waitqueue: g2, g4
g6 開始搶鎖,正在自旋中
owner: g5 waitqueue: g2, g4 wokenFlag: 1 spinning: g6
g5 釋放鎖,由於此時有協程正在自旋,因此不會去等待佇列中喚醒協程,鎖被 g6 輕鬆搶到
owner: g6 waitqueue: g2, g4 wokenFlag: 0 spinning: null
g6 釋放鎖,g2 被喚醒,此時 g7 開始搶鎖,g2 沒有搶過,又被放回等待佇列首部,但是 g2 由於太久沒有搶到鎖,進入飢餓模式了
owner: g7 waitqueue: g2(飢餓), g4 starvationFlag: 1
g8 來搶鎖,由於處於飢餓狀態,g8 會被直接放在等待佇列尾部
owner: g7 waitqueue: g2(飢餓), g4, g8 starvationFlag: 1
g7 釋放鎖,由於處於飢餓狀態,會直接喚醒 g2 並排程它
owner: g2 waitqueue: g4, g8 starvationFlag: 1
g2 執行完畢,釋放鎖,注意此刻依舊是飢餓狀態,直接排程 g4,g4 甦醒後,發現它自己沒有飢餓,於是 clear starvationFlag
owner: g4 waitqueue: g8 starvationFlag: 0
此時新來的 g8 可以正常加入到對鎖的爭搶中了,之後就是正常的加鎖解鎖邏輯了。
一點小瑕疵: 一種很邊緣的 starvation case
由於等待佇列中的協程只有當被喚醒之後才會根據等待時間來判斷是否進入 starvation mode,因此會存在一個協程在等待佇列中等待了很久,它實際上已經飢餓了,但是一直沒被喚醒過,就沒機會 set starvationFlag,這就會導致飢餓現象的發生。
那麼會存在等待佇列裡的協程一直不被喚醒的情況麼?
有的!在 unlockSlow()
時如果 wokenFlag = 1,那就不會去喚醒等待佇列中的執行緒。就會存在這樣一種情況,假設每次 Unlock()
時恰好有一個新來的協程在自旋,那等待佇列中的協程就會永遠飢餓下去!