在 強化學習實戰 | 表格型Q-Learning玩井字棋(二)開始訓練!中,我們讓agent“簡陋地”訓練了起來,經過了耗費時間的10萬局遊戲過後,卻效果平平,尤其是初始狀態的數值表現和預期相差不小。我想主要原因就是沒有采用等價局面同步更新的方法,導致資料利用率較低。等價局面有7個,分別是:旋轉90°,旋轉180°,旋轉270°,水平翻轉,垂直翻轉,旋轉90°+水平翻轉,旋轉90°+垂直翻轉,如下圖所示。另外,在生成等價局面的同時,也要生成等價的動作,這樣才能實現完整的Q值更新。
步驟1:寫旋轉和翻轉函式
def rotate(array): # Input: np.array [[1,2,3],[4,5,6],[7,8,9]] list_ = list(array) list_[:] = map(list,zip(*list_[::-1])) return np.array(list_) # Output: np.array [[7,4,1],[8,5,2],[9,6,3]] def flip(array_, direction): # Input: np.array [[1,2,3],[4,5,6],[7,8,9]] array = array_.copy() n = int(np.floor(len(array)/2)) if direction == 'vertical': # Output: np.array [[7,8,9],[4,5,6],[1,2,3]] for i in range(n): temp = array[i].copy() array[i] = array[-i-1].copy() array[-i-1] = temp elif direction == 'horizon': # Output: np.array [[3,2,1],[6,5,4],[9,8,7]] for i in range(n): temp = array[:,i].copy() array[:,i] = array[:,-i-1] array[:,-i-1] = temp return array
步驟2:寫生成等價局面及等價動作的函式
函式名為 genEqualStateAndAction(state, action),定義在 Agent() 類中。
def genEqualStateAndAction(self, state_, action_): # Input: np.array, tuple(x,y) state, action = state_.copy(), action_ equalStates, equalActions = [], [] # 原局面 equalStates.append(state) equalActions.append(action) # 水平翻轉 state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 state_tf = flip(state_tf, 'horizon') action_state_tf = flip(action_state_tf, 'horizon') index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) # 垂直翻轉 state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 state_tf = flip(state_tf, 'vertical') action_state_tf = flip(action_state_tf, 'vertical') index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) # 旋轉90° state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 for i in range(1): state_tf = rotate(state_tf) action_state_tf = rotate(action_state_tf) index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) # 旋轉180° state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 for i in range(2): state_tf = rotate(state_tf) action_state_tf = rotate(action_state_tf) index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) # 旋轉270° state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 for i in range(3): state_tf = rotate(state_tf) action_state_tf = rotate(action_state_tf) index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) # 旋轉90° + 水平翻轉 state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 for i in range(1): state_tf = rotate(state_tf) action_state_tf = rotate(action_state_tf) state_tf = flip(state_tf, 'horizon') action_state_tf = flip(action_state_tf, 'horizon') index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) # 旋轉90° + 垂直翻轉 state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 for i in range(1): state_tf = rotate(state_tf) action_state_tf = rotate(action_state_tf) state_tf = flip(state_tf, 'vertical') action_state_tf = flip(action_state_tf, 'vertical') index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) return equalStates, equalActions
細心的讀者可能會發問了:你這生成等價局面不去重的麼?是的,不去重了。原因之一是如果要去重,那麼要比對大量的np.array,實現起來較麻煩,可能會增加很多程式碼時間;原因之二是對重複的局面多次更新,只是不符合邏輯,但應該沒有副作用:畢竟只要資料夠多,最後Q表中的值都會收斂到一個值,而重複出現次數多的局面只是收斂得更快罷了。
步驟3:修改Agent()中的相關程式碼
需要修改方法 addNewState(self, env_, currentMove) 和方法 updateQtable(self, env_, currentMove, done_),整體程式碼如下:
import gym import random import time import numpy as np # 檢視所有已註冊的環境 # from gym import envs # print(envs.registry.all()) def str2tuple(string): # Input: '(1,1)' string2list = list(string) return ( int(string2list[1]), int(string2list[4]) ) # Output: (1,1) def rotate(array): # Input: np.array [[1,2,3],[4,5,6],[7,8,9]] list_ = list(array) list_[:] = map(list,zip(*list_[::-1])) return np.array(list_) # Output: np.array [[7,4,1],[8,5,2],[9,6,3]] def flip(array_, direction): # Input: np.array [[1,2,3],[4,5,6],[7,8,9]] array = array_.copy() n = int(np.floor(len(array)/2)) if direction == 'vertical': # Output: np.array [[7,8,9],[4,5,6],[1,2,3]] for i in range(n): temp = array[i].copy() array[i] = array[-i-1].copy() array[-i-1] = temp elif direction == 'horizon': # Output: np.array [[3,2,1],[6,5,4],[9,8,7]] for i in range(n): temp = array[:,i].copy() array[:,i] = array[:,-i-1] array[:,-i-1] = temp return array class Game(): def __init__(self, env): self.INTERVAL = 0 # 行動間隔 self.RENDER = False # 是否顯示遊戲過程 self.first = 'blue' if random.random() > 0.5 else 'red' # 隨機先後手 self.currentMove = self.first self.env = env self.agent = Agent() def switchMove(self): # 切換行動玩家 move = self.currentMove if move == 'blue': self.currentMove = 'red' elif move == 'red': self.currentMove = 'blue' def newGame(self): # 新建遊戲 self.first = 'blue' if random.random() > 0.5 else 'red' self.currentMove = self.first self.env.reset() self.agent.reset() def run(self): # 玩一局遊戲 self.env.reset() # 在第一次step前要先重置環境,不然會報錯 while True: print(f'--currentMove: {self.currentMove}--') self.agent.updateQtable(self.env, self.currentMove, False) if self.currentMove == 'blue': self.agent.lastState_blue = self.env.state.copy() elif self.currentMove == 'red': self.agent.lastState_red = self.agent.overTurn(self.env.state) # 紅方視角需將狀態翻轉 action = self.agent.epsilon_greedy(self.env, self.currentMove) if self.currentMove == 'blue': self.agent.lastAction_blue = action['pos'] elif self.currentMove == 'red': self.agent.lastAction_red = action['pos'] state, reward, done, info = self.env.step(action) if done: self.agent.lastReward_blue = reward self.agent.lastReward_red = -1 * reward self.agent.updateQtable(self.env, self.currentMove, True) else: if self.currentMove == 'blue': self.agent.lastReward_blue = reward elif self.currentMove == 'red': self.agent.lastReward_red = -1 * reward if self.RENDER: self.env.render() self.switchMove() time.sleep(self.INTERVAL) if done: self.newGame() if self.RENDER: self.env.render() time.sleep(self.INTERVAL) break class Agent(): def __init__(self): self.Q_table = {} self.EPSILON = 0.05 self.ALPHA = 0.5 self.GAMMA = 1 # 折扣因子 self.lastState_blue = None self.lastAction_blue = None self.lastReward_blue = None self.lastState_red = None self.lastAction_red = None self.lastReward_red = None def reset(self): self.lastState_blue = None self.lastAction_blue = None self.lastReward_blue = None self.lastState_red = None self.lastAction_red = None self.lastReward_red = None def getEmptyPos(self, state): # 返回空位的座標 action_space = [] for i, row in enumerate(state): for j, one in enumerate(row): if one == 0: action_space.append((i,j)) return action_space def randomAction(self, env_, mark): # 隨機選擇空格動作 actions = self.getEmptyPos(env_) action_pos = random.choice(actions) action = {'mark':mark, 'pos':action_pos} return action def overTurn(self, state): # 翻轉狀態 state_ = state.copy() for i, row in enumerate(state_): for j, one in enumerate(row): if one != 0: state_[i][j] *= -1 return state_ def genEqualStateAndAction(self, state_, action_): # Input: np.array, tuple(x,y) state, action = state_.copy(), action_ equalStates, equalActions = [], [] # 原局面 equalStates.append(state) equalActions.append(action) # 水平翻轉 state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 state_tf = flip(state_tf, 'horizon') action_state_tf = flip(action_state_tf, 'horizon') index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) # 垂直翻轉 state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 state_tf = flip(state_tf, 'vertical') action_state_tf = flip(action_state_tf, 'vertical') index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) # 旋轉90° state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 for i in range(1): state_tf = rotate(state_tf) action_state_tf = rotate(action_state_tf) index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) # 旋轉180° state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 for i in range(2): state_tf = rotate(state_tf) action_state_tf = rotate(action_state_tf) index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) # 旋轉270° state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 for i in range(3): state_tf = rotate(state_tf) action_state_tf = rotate(action_state_tf) index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) # 旋轉90° + 水平翻轉 state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 for i in range(1): state_tf = rotate(state_tf) action_state_tf = rotate(action_state_tf) state_tf = flip(state_tf, 'horizon') action_state_tf = flip(action_state_tf, 'horizon') index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) # 旋轉90° + 垂直翻轉 state_tf = state.copy() action_state_tf = np.zeros(state.shape) action_state_tf[action] = 1 for i in range(1): state_tf = rotate(state_tf) action_state_tf = rotate(action_state_tf) state_tf = flip(state_tf, 'vertical') action_state_tf = flip(action_state_tf, 'vertical') index = np.where(action_state_tf == 1) action_tf = (int(index[0]), int(index[1])) equalStates.append(state_tf) equalActions.append(action_tf) return equalStates, equalActions def addNewState(self, env_, currentMove): # 若當前狀態不在Q表中,則新增狀態 state = env_.state if currentMove == 'blue' else self.overTurn(env_.state) # 如果是紅方行動則翻轉狀態 eqStates, eqActions = self.genEqualStateAndAction(state, (0,0)) for one in eqStates: if str(one) not in self.Q_table: self.Q_table[str(one)] = {} actions = self.getEmptyPos(one) for action in actions: self.Q_table[str(one)][str(action)] = 0 def epsilon_greedy(self, env_, currentMove): # ε-貪心策略 state = env_.state if currentMove == 'blue' else self.overTurn(env_.state) # 如果是紅方行動則翻轉狀態 Q_Sa = self.Q_table[str(state)] maxAction, maxValue, otherAction = [], -100, [] for one in Q_Sa: if Q_Sa[one] > maxValue: maxValue = Q_Sa[one] for one in Q_Sa: if Q_Sa[one] == maxValue: maxAction.append(str2tuple(one)) else: otherAction.append(str2tuple(one)) try: action_pos = random.choice(maxAction) if random.random() > self.EPSILON else random.choice(otherAction) except: # 處理從空的otherAction中取值的情況 action_pos = random.choice(maxAction) action = {'mark':currentMove, 'pos':action_pos} return action def updateQtable(self, env_, currentMove, done_): judge = (currentMove == 'blue' and self.lastState_blue is None) or \ (currentMove == 'red' and self.lastState_red is None) if judge: # 邊界情況1:若agent無上一狀態,說明是遊戲中首次動作,那麼只需要新增狀態就好,無需更新Q值 self.addNewState(env_, currentMove) return if done_: # 邊界情況2:若當前狀態S_是終止狀態,則無需把S_新增至Q表格中,直接令maxQ_S_a = 0,並同時更新雙方Q值 for one in ['blue', 'red']: S = self.lastState_blue if one == 'blue' else self.lastState_red a = self.lastAction_blue if one == 'blue' else self.lastAction_red eqStates, eqActions = self.genEqualStateAndAction(S, a) R = self.lastReward_blue if one == 'blue' else self.lastReward_red # print('lastState S:\n', S) # print('lastAction a: ', a) # print('lastReward R: ', R) # print('\n') maxQ_S_a = 0 for S, a in zip(eqStates, eqActions): self.Q_table[str(S)][str(a)] = (1 - self.ALPHA) * self.Q_table[str(S)][str(a)] \ + self.ALPHA * (R + self.GAMMA * maxQ_S_a) return # 其他情況下:Q表無當前狀態則新增狀態,否則直接更新Q值 self.addNewState(env_, currentMove) S_ = env_.state if currentMove == 'blue' else self.overTurn(env_.state) S = self.lastState_blue if currentMove == 'blue' else self.lastState_red a = self.lastAction_blue if currentMove == 'blue' else self.lastAction_red eqStates, eqActions = self.genEqualStateAndAction(S, a) R = self.lastReward_blue if currentMove == 'blue' else self.lastReward_red # print('lastState S:\n', S) # print('State S_:\n', S_) # print('lastAction a: ', a) # print('lastReward R: ', R) # print('\n') Q_S_a = self.Q_table[str(S_)] maxQ_S_a = -100 for one in Q_S_a: if Q_S_a[one] > maxQ_S_a: maxQ_S_a = Q_S_a[one] for S, a in zip(eqStates, eqActions): self.Q_table[str(S)][str(a)] = (1 - self.ALPHA) * self.Q_table[str(S)][str(a)] \ + self.ALPHA * (R + self.GAMMA * maxQ_S_a) env = gym.make('TicTacToeEnv-v0') game = Game(env) for i in range(10000): print('episode', i) game.run() Q_table = game.agent.Q_table
測試
經過了上述優化,agent能夠在一輪對局中更新16個Q值,比起上一節 強化學習實戰 | 表格型Q-Learning玩井字棋(二)開始訓練! 中的更新2個Q值要多8倍,不妨就玩1萬局遊戲,看看是否能玩出之前玩8萬局遊戲的效果。
專案1:檢視Q表格的狀態數
一般般,仍然有狀態沒有覆蓋到。
專案2:檢視初始狀態
先手開局:
這效果也太好了吧!不但有完美的對稱,還有涇渭分明的勝負判斷: 第一步走四邊就穩了,走四角和走中間都是輸面大。看來優化之後,Q值的整體方差這一塊表現得非常好了。
再貼一個後手開局的情況:
專案3:測試程式碼時間
引入了更復雜的trick,確實是完美地爭取到了一些收益,但玩一局遊戲的時間一定是增加了,增加了多少呢?我們用上一節的老演算法和本節的演算法分別跑2000局遊戲,記錄一下時間(本人使用的CPU是:Intel(R) Core(TM) i7-9750H)。
雙向更新+等價局面同步更新:
雙向更新:
增加了不到兩倍的時間,換來了大約8倍的更新量提高,還降低了方差,看來這優化是賺的。
小結
拿著優化好的演算法,心裡也有了些底氣,可以放心大膽地增加訓練時間了。下一節,我們將用訓練完全Q表,用pygame做一個擁有人機對陣,機機對戰,作弊功能的井字棋遊戲。還可以做一些對戰的資料分析,比如AI內戰的勝率多高?AI對陣隨機策略的勝率多高?下節見!