前面我們去檢視了類的結構,其中有個cache_t cache;
欄位沒有去分析,現在我們就去原始碼中探尋一下。
cache
顧名思義,就是快取的意思,它是對曾經呼叫過的方法進行快取,為什麼要快取呢?首先我們先說下方法的呼叫,在我們呼叫[objc message]
的時候會編譯成objc_msgSend(objc,@selector(message))
,這時候就物件就會根據自己的isa
指標去尋找自己的類,在找到類後根據類得到class_rw_t
結構體,然後遍歷class_rw_t
中的method_array_t methods
陣列,如果找不到則根據superclass
指標去遍歷父類的方法列表直到找到為止(類方法同理),如果每次呼叫方法都去查下的話是一個很浪費資源的做法,所以OC就設計了一個cache
去快取曾經呼叫過的方法列表。
cache_t
是一個雜湊表,所以可以使用鍵值對的方式去讀取,這樣的效率就肯定比遍歷快的多,我們簡單看下方法是怎麼快取的
方法呼叫
首先我們在lookUpImpOrForward
打個斷點
_objc_msgSend
後會呼叫該方法
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
Class curClass;
IMP imp = nil;
Method meth;
bool triedResolver = NO;
runtimeLock.assertUnlocked();
if (cache) {
//1,如果本身有快取就直接返回快取中的
imp = cache_getImp(cls, sel);
if (imp) return imp;
}
if (!cls->isRealized()) {
// 2,檢視類是否載入,若未載入 直接載入
rwlock_writer_t lock(runtimeLock);
realizeClass(cls);
}
if (initialize && !cls->isInitialized()) {
//3,呼叫initialize方法
_class_initialize (_class_getNonMetaClass(cls, inst));
}
retry:
runtimeLock.read();
// Try this class iss cache.
//4,在類快取中查詢,如果存在 直接返回
imp = cache_getImp(cls, sel);
if (imp) goto done;
// Try this class is method lists.
//5,在自己的方法列表中查詢
meth = getMethodNoSuper_nolock(cls, sel);
if (meth) {
//6,如果查詢到了,載入進快取,結束查詢
log_and_fill_cache(cls, meth->imp, sel, inst, cls);
imp = meth->imp;
goto done;
}
// Try superclass caches and method lists.
curClass = cls;
//7,迴圈在類的父類中查詢方法
while ((curClass = curClass->superclass)) {
// Superclass cache.
//8,在父類快取中查詢
imp = cache_getImp(curClass, sel);
if (imp) {
if (imp != (IMP)_objc_msgForward_impcache) {
//9,在父類中找到方法並且不是`_objc_msgForward_impcache`(訊息轉發)就把方法新增的自身的快取中,並返回
// Found the method in a superclass. Cache it in this class.
log_and_fill_cache(cls, imp, sel, inst, curClass);
goto done;
}
else {
// Found a forward:: entry in a superclass.
// Stop searching, but do not cache yet; call method
// resolver for this class first.
break;
}
}
// Superclass method list.
//10,快取中查不到在父類的方法列表中查詢
meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
//11查詢到,就把方法新增的自身的快取中,並返回
log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
imp = meth->imp;
goto done;
}
}
if (resolver && !triedResolver) {
//12,方法解析
runtimeLock.unlockRead();
_class_resolveMethod(cls, sel, inst);
triedResolver = YES;
goto retry;
}
//13,查詢不到直接返回`_objc_msgForward_impcache`(方法轉發)
imp = (IMP)_objc_msgForward_impcache;
cache_fill(cls, sel, imp, inst);
done:
runtimeLock.unlockRead();
return imp;
}
複製程式碼
1,如果本身有快取就直接返回快取中的
if (cache) {
imp = cache_getImp(cls, sel);
if (imp) return imp;
}
複製程式碼
2,檢視類是否載入,若未載入 直接載入
if (!cls->isRealized()) {
rwlock_writer_t lock(runtimeLock);
realizeClass(cls);//類如果沒有加入記憶體 則加入
}
複製程式碼
3,呼叫initialize方法
if (initialize && !cls->isInitialized()) {
_class_initialize (_class_getNonMetaClass(cls, inst));
}
複製程式碼
由此也能看出
initialize
與類載入是否到記憶體中無關,只要實現了該方法切第一次呼叫類就會執行該方法
4,在類快取中查詢,如果存在 直接返回
imp = cache_getImp(cls, sel);
if (imp) goto done;
複製程式碼
5,在自己的方法列表中查詢
6,如果查詢到了,載入進快取,結束查詢
meth = getMethodNoSuper_nolock(cls, sel);
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, cls);
imp = meth->imp;
goto done;
}
複製程式碼
7,迴圈在類的父類中查詢方法
8,在父類快取中查詢
9,在父類中找到方法並且不是_objc_msgForward_impcache
(訊息轉發)就把方法新增的自身的快取中,並返回
while ((curClass = curClass->superclass)) {
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (imp) {
if (imp != (IMP)_objc_msgForward_impcache) {
// Found the method in a superclass. Cache it in this class.
log_and_fill_cache(cls, imp, sel, inst, curClass);
goto done;
}
else {
// Found a forward:: entry in a superclass.
// Stop searching, but do not cache yet; call method
// resolver for this class first.
break;
}
}
}
複製程式碼
10,快取中查不到在父類的方法列表中查詢
11,查詢到,就把方法新增的自身的快取中,並返回
while ((curClass = curClass->superclass)) {
meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
log_and_fill_cache(cls, meth->imp, sel, inst, curClass);
imp = meth->imp;
goto done;
}
}
複製程式碼
12,方法解析
if (resolver && !triedResolver) {
//12,方法解析
runtimeLock.unlockRead();
_class_resolveMethod(cls, sel, inst);
// Don't cache the result; we don't hold the lock so it may have
// changed already. Re-do the search from scratch instead.
triedResolver = YES;
goto retry;
}
複製程式碼
在這個函式中實現了複雜的方法解析邏輯。如果
cls
是元類則會傳送+resolveClassMethod
,然後根據lookUpImpOrNil(cls, sel, inst, NO/*initialize*/, YES/*cache*/, NO/*resolver*/)
函式的結果來判斷是否傳送+resolveInstanceMethod
;如果不是元類,則只需要傳送+resolveInstanceMethod
訊息。這裡呼叫+resolveInstanceMethod
或+resolveClassMethod
時再次用到了objc_msgSend
,而且第三個引數正是傳入lookUpImpOrForward
的那個sel
。在傳送方法解析訊息之後還會呼叫lookUpImpOrNil(cls, sel, inst, NO/*initialize*/, YES/*cache*/, NO/*resolver*/)
來判斷是否已經新增上sel
對應的IMP
了,列印出結果。
13,查詢不到直接返回_objc_msgForward_impcache
(方法轉發)
imp = (IMP)_objc_msgForward_impcache;
cache_fill(cls, sel, imp, inst);
複製程式碼
方法快取
在上面程式碼中我們可以看到有呼叫cache_fill
方法
void cache_fill(Class cls, SEL sel, IMP imp, id receiver)
{
#if !DEBUG_TASK_THREADS
mutex_locker_t lock(cacheUpdateLock);
cache_fill_nolock(cls, sel, imp, receiver);
#else
_collecting_in_critical();
return;
#endif
}
複製程式碼
又呼叫了cache_fill_nolock
static void cache_fill_nolock(Class cls, SEL sel, IMP imp, id receiver)
{
cacheUpdateLock.assertLocked();
// Never cache before +initialize is done
//類如果沒有初始化直接返回
if (!cls->isInitialized()) return;
// Make sure the entry was not added to the cache by some other thread
// before we grabbed the cacheUpdateLock.
//讀取快取 如果存在,直接返回
if (cache_getImp(cls, sel)) return;
//獲取快取表,以`sel`地址為key
cache_t *cache = getCache(cls);
cache_key_t key = getKey(sel);
// Use the cache as-is if it is less than 3/4 full
//獲取快取中已被佔用多少
mask_t newOccupied = cache->occupied() + 1;
//快取一共多大
mask_t capacity = cache->capacity();
if (cache->isConstantEmptyCache()) {
// Cache is read-only. Replace it.
//如果是個空表則初始化
cache->reallocate(capacity, capacity ?: INIT_CACHE_SIZE);
}
else if (newOccupied <= capacity / 4 * 3) {
//如果快取小於3/4
// Cache is less than 3/4 full. Use it as-is.
}
else {
// Cache is too full. Expand it.
//快取超過3/4 則要重新分配快取空間
cache->expand();
}
// Scan for the first unused slot and insert there.
// There is guaranteed to be an empty slot because the
// minimum size is 4 and we resized at 3/4 full.
//獲取到可用的bucket_t
bucket_t *bucket = cache->find(key, receiver);
//判斷當前的位置是否為空,如果是的 則將佔用量+1
if (bucket->key() == 0) cache->incrementOccupied();
//存入快取
bucket->set(key, imp);
}
複製程式碼
這個方法主要就是去查詢表中的空餘位置,然後將對應的方法放入該位置
我們看到快取如果超出了,則需要重新分配空間
void cache_t::expand()
{
cacheUpdateLock.assertLocked();
uint32_t oldCapacity = capacity();
uint32_t newCapacity = oldCapacity ? oldCapacity*2 : INIT_CACHE_SIZE;
if ((uint32_t)(mask_t)newCapacity != newCapacity) {
// mask overflow - ca not grow further
// fixme this wastes one bit of mask
newCapacity = oldCapacity;
}
reallocate(oldCapacity, newCapacity);
}
void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity)
{
bool freeOld = canBeFreed();
bucket_t *oldBuckets = buckets();
bucket_t *newBuckets = allocateBuckets(newCapacity);
// Cache is old contents are not propagated.
// This is thought to save cache memory at the cost of extra cache fills.
// fixme re-measure this
assert(newCapacity > 0);
assert((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
setBucketsAndMask(newBuckets, newCapacity - 1);
if (freeOld) {
cache_collect_free(oldBuckets, oldCapacity);
cache_collect(false);
}
}
複製程式碼
在上述程式碼中可以看到,重新分配快取空間是原先空間的2倍,然後後將原先的空間釋放了,但是沒有將原先的資料儲存下來,這是為什麼呢?主要因為這個表是個雜湊表,它獲取到的位置是拿key
與mask
去進行&
運算得出的,我們可以在find
方法中檢視到
bucket_t * cache_t::find(cache_key_t k, id receiver)
{
assert(k != 0);
bucket_t *b = buckets();
mask_t m = mask();
//根據`key`與`mask`獲取到儲存在表中的位置
mask_t begin = cache_hash(k, m);
mask_t i = begin;
do {
if (b[i].key() == 0 || b[i].key() == k) {
return &b[i];
}
} while ((i = cache_next(i, m)) != begin);
// hack
Class cls = (Class)((uintptr_t)this - offsetof(objc_class, cache));
cache_t::bad_cache(receiver, (SEL)k, cls);
}
//該方法就是進行簡單的`&`運算獲取,因為是`&`運算,所以得到的結果肯定比`mask`小
static inline mask_t cache_hash(cache_key_t key, mask_t mask)
{
return (mask_t)(key & mask);
}
複製程式碼
mask其實就是當前最大儲存量-1
void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity)
{
bool freeOld = canBeFreed();
bucket_t *oldBuckets = buckets();
bucket_t *newBuckets = allocateBuckets(newCapacity);
assert(newCapacity > 0);
assert((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
//設定新表,設定mask值
setBucketsAndMask(newBuckets, newCapacity - 1);
if (freeOld) {
cache_collect_free(oldBuckets, oldCapacity);
cache_collect(false);
}
}
void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
{
mega_barrier();
_buckets = newBuckets;
// ensure other threads see new buckets before new mask
mega_barrier();
_mask = newMask;
_occupied = 0;
}
複製程式碼
因為是個mask
就只有那麼大,如果容量變大了,那麼mask
的值也會變話,那樣再拿key
與新的mask
進行&
運算得出的結果肯定就不是原先的值了
因為key
值不確定,進行&
運算後很可能得到相同的值,這也是我們常說的hash衝突
,蘋果是以cache_next
的方式去解決衝突(arm64)
static inline mask_t cache_next(mask_t i, mask_t mask) {
return i ? i-1 : mask;
}
複製程式碼
從當前位子一直向下找,找到了空位置,就填充進去,如果找不到,就從後面向前遍歷查詢
mask
,一直找到(i = cache_next(i, m)) != begin
總結
1,當方法呼叫的時候首先回去快取中查詢,找不到會遍歷方法列表,在找不到會查詢父類方法快取,然後查詢父類方法列表,一直找到rootClass
,找到後會加入本身類的方法快取中,如果一直找不到就進行訊息轉發;
2,方法快取是使用cache_t
快取,它是一個雜湊表,當快取空間大於3/4
時就需要擴容,並將先前儲存的所有方法清空;
3,當第二次呼叫該方法時會在objc_msgSend
中查詢一遍然後呼叫,所以可以打斷點嘗試下第二次呼叫的時候就不會在呼叫lookUpImpOrForward
了