673. Number of Longest Increasing Subsequence
Given an integer array nums, return the number of longest increasing subsequences.
Notice that the sequence has to be strictly increasing.
Example 1:
Input: nums = [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequences are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: nums = [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Constraints:
1 <= nums.length <= 2000
-106 <= nums[i] <= 106
來源:力扣(LeetCode)
連結:https://leetcode-cn.com/problems/number-of-longest-increasing-subsequence
著作權歸領釦網路所有。商業轉載請聯絡官方授權,非商業轉載請註明出處。
用兩個dp陣列,一個len[i]表示,到第i個數字,最長的子序列的長度。count[i]表示,第i個數字,最長的子序列的個數。
class Solution {
public int findNumberOfLIS(int[] nums) {
if (nums.length <= 1) {
return nums.length;
}
int []len = new int[nums.length];
Arrays.fill(len, 1);
int []count = new int[nums.length];
Arrays.fill(count, 1);
int max = 0;
int maxCount = 0;
for (int i = 0; i < nums.length; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
if (len[i] == len[j] + 1) {
// 說明 nums[i] 這個數字可以加在以 nums[j] 結尾的遞增序列後面
// 則以 nums[j] 結尾的遞增序列個數可以直接加到以 nums[i] 結尾的遞增序列個數上
count[i] += count[j];
} else if (len[i] < len[j] + 1) {
// 說明找到了一條長度更長的遞增序列,直接更新len[i]和count[i],與j保持一致
len[i] = len[j] + 1;
count[i] = count[j];
}
}
}
// 更新最終長度與最終答案
if (len[i] == max) {
maxCount += count[i];
} else if (len[i] > max) {
max = len[i];
maxCount = count[i];
}
}
return maxCount;
}
}
相關文章
- [LeetCode] 674. Longest Continuous Increasing SubsequenceLeetCode
- 【Lintcode】398. Longest Continuous Increasing Subsequence II
- Leetcode 329. Longest Increasing Path in a MatrixLeetCode
- 最長公共子序列 Longest Common Subsequence
- Leetcode 329. Longest Increasing Path in a Matrix (python+cpp)LeetCodePython
- 300-Longest Increasing Subsequnce-最長遞增子序列
- Increasing Sequence with Fixed OR
- Missing Subsequence Sum
- leetcode392. Is SubsequenceLeetCode
- Lintcode 1263. Is Subsequence
- Longest Valid Parentheses
- Longest Univalue Path
- CF1922E Increasing Subsequences
- E. Increasing Subsequences__2
- [atcoder 349] [F - Subsequence LCM]
- B. Missing Subsequence Sum
- 673. 最長遞增子序列的個數
- LeetCode之Reveal Cards In Increasing Order(Kotlin)LeetCodeKotlin
- LeetCode之Increasing Order Search Tree(Kotlin)LeetCodeKotlin
- [LeetCode] 727. Minimum Window SubsequenceLeetCode
- Leetcode 32 Longest Valid ParenthesesLeetCode
- Leetcode 14 Longest Common PrefixLeetCode
- LeetCode 5 (Longest Palindromic Substring)LeetCode
- 687-Longest Univalue Path
- [ABC292G] Count Strictly Increasing Sequences
- CF163A Substring and Subsequence 題解
- 簡單dp -- Common Subsequence POJ - 1458
- CF1580D Subsequence 題解
- 【Leetcode】1081. Smallest Subsequence of Distinct CharactersLeetCode
- 【Leetcode】1673. Find the Most Competitive SubsequenceLeetCode
- [LeetCode] 32. Longest Valid ParenthesesLeetCode
- [LeetCode] 5. Longest Palindromic SLeetCode
- JavaScript Number()JavaScript
- [ARC186E] Missing Subsequence 題解
- Leetcode 3 Longest Substring Without Repeating CharactersLeetCode
- #3 Longest Substring Without Repeating Characters[M]
- Leetcode 298 Binary Tree Longest Consecutive SequenceLeetCode
- [LeetCode] 2831. Find the Longest Equal SubarrayLeetCode