"""
一、Hard Voting 與 Soft Voting 的對比
1)使用方式
voting = 'hard':表示最終決策方式為 Hard Voting Classifier;
voting = 'soft':表示最終決策方式為 Soft Voting Classifier;
2)思想
Hard Voting Classifier:根據少數服從多數來定最終結果;
Soft Voting Classifier:將所有模型預測樣本為某一類別的概率的平均值作為標準,概率最高的對應的型別為最終的預測結果;
"""
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_moons
from sklearn.metrics import accuracy_score,roc_auc_score
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import StratifiedKFold
iris = datasets.load_iris()
x=iris.data
y=iris.target
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
clf1 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsample=0.7,
colsample_bytree=0.6, objective='binary:logistic')
clf2 = RandomForestClassifier(n_estimators=50, max_depth=1, min_samples_split=4,
min_samples_leaf=63,oob_score=True)
clf3 = SVC(C=0.1)
eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='hard')
for clf, label in zip([clf1, clf2, clf3, eclf], ['XGBBoosting', 'Random Forest', 'SVM', 'Ensemble']):
scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')
print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
結果:
Accuracy: 0.96 (+/- 0.02) [XGBBoosting]
Accuracy: 0.33 (+/- 0.00) [Random Forest]
Accuracy: 0.92 (+/- 0.03) [SVM]
Accuracy: 0.92 (+/- 0.03) [Ensemble]
x=iris.data
y=iris.target
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
clf1 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsample=0.8,
colsample_bytree=0.8, objective='binary:logistic')
clf2 = RandomForestClassifier(n_estimators=50, max_depth=1, min_samples_split=4,
min_samples_leaf=63,oob_score=True)
clf3 = SVC(C=0.1, probability=True)
eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='soft', weights=[2, 1, 1])
clf1.fit(x_train, y_train)
for clf, label in zip([clf1, clf2, clf3, eclf], ['XGBBoosting', 'Random Forest', 'SVM', 'Ensemble']):
scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')
print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
結果:
Accuracy: 0.96 (+/- 0.02) [XGBBoosting]
Accuracy: 0.33 (+/- 0.00) [Random Forest]
Accuracy: 0.92 (+/- 0.03) [SVM]
Accuracy: 0.96 (+/- 0.02) [Ensemble]