P2853 [USACO06DEC]Cow Picnic S 【DFS】
題目描述
The cows are having a picnic! Each of Farmer John’s K (1 ≤ K ≤ 100) cows is grazing in one of N (1 ≤ N ≤ 1,000) pastures, conveniently numbered 1…N. The pastures are connected by M (1 ≤ M ≤ 10,000) one-way paths (no path connects a pasture to itself).
The cows want to gather in the same pasture for their picnic, but (because of the one-way paths) some cows may only be able to get to some pastures. Help the cows out by figuring out how many pastures are reachable by all cows, and hence are possible picnic locations.
K(1≤K≤100)只奶牛分散在N(1≤N≤1000)個牧場.現在她們要集中起來進餐.牧場之間有M(1≤M≤10000)條有向路連線,而且不存在起點和終點相同的有向路.她們進餐的地點必須是所有奶牛都可到達的地方.那麼,有多少這樣的牧場呢?
輸入格式
Line 1: Three space-separated integers, respectively: K, N, and M
Lines 2…K+1: Line i+1 contains a single integer (1…N) which is the number of the pasture in which cow i is grazing.
Lines K+2…M+K+1: Each line contains two space-separated integers, respectively A and B (both 1…N and A != B), representing a one-way path from pasture A to pasture B.
輸出格式
Line 1: The single integer that is the number of pastures that are reachable by all cows via the one-way paths.
輸入輸出樣例
輸入 #1
2 4 4
2
3
1 2
1 4
2 3
3 4
輸出 #1
2
說明/提示
The cows can meet in pastures 3 or 4.
兩個奶牛可能在同一個位置。
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
const int maxn = 1e4 + 10;
struct node{
int v, nex;
}edge[maxn << 1];
int head[maxn];
int sum[maxn];
int vis[maxn];
int a[maxn];
int cnt;
int n, m, k;
void add_edge(int u, int v) {
edge[++cnt].v = v;
edge[cnt].nex = head[u];
head[u] = cnt;
}
void dfs(int id) {
sum[id]++;
vis[id] = true;
for(int i = head[id]; i; i = edge[i].nex) {
int v = edge[i].v;
if(vis[v] == false)
dfs(v);
}
}
int main() {
cin >> k >> n >> m;
int data;
for(int i = 1; i <= k; i++) cin >> a[i];
for(int i = 1; i <= m; i++) {
int x, y;
cin >> x >> y;
add_edge(x, y);
}
for(int i = 1; i <= k; i++) {
memset(vis, 0, sizeof(vis));
dfs(a[i]);
}
int ans = 0;
for(int i = 1; i <= n; i++) {
if(sum[i] >= k) ans++;
}
cout << ans;
return 0;
}
相關文章
- P2854 [USACO06DEC] Cow Roller Coaster SAST
- 洛谷 P3034 Cow Photography G/S——題解
- 【LuoguP3611 】[USACO17JAN]Cow Dance Show S
- P8271 [USACO22OPEN] COW Operations S (思維)
- The Cow Prom(POJ-3180)
- POJ 3267 The Cow Lexicon(dp)
- POJ3278 Catch That Cow
- 2018ACM-ICPC北京賽區 - A:Jin Yong’s Wukong Ranking List(DFS)ACM
- DFS
- 事件流平臺Kafka、Pulsar和RabbitMQ比較 - Picnic事件KafkaMQ
- 什麼是 Dirty COW 漏洞
- DFS樹
- dfs序
- dfs技巧
- 【貪心】POJ 3617:Best Cow Line
- Tempter of the Bone(DFS)
- 深搜dfs
- Cow Marathon(BFS求數的直徑)
- Prime Ring Problem (dfs)
- DAG bfs + dfs 126,
- 樹的DFS序
- POJ 3360-Cow Contest(傳遞閉包)
- DFS演算法原理演算法
- 圖的dfs_euler
- DFS序例題+感受
- DFS入門筆記筆記
- COW奶牛!CopyOnWrite機制瞭解一下
- Java 中的寫時複製 (Copy on Write, COW)Java
- P3045 【USACO12FEB】 Cow Coupons G
- Mr. Kitayuta‘s Technology CodeForces - 505D(並查集+拓撲排序或dfs找環) 題解並查集排序
- DFS(深度優先搜尋)
- 【題目整理】dfs入門
- 9*9的數獨(dfs)
- DFS剪枝最佳化策略
- 關於元素排列的DFS
- DFS實現拓撲排序排序
- P1219 八皇后(dfs)
- bzoj4500: 矩陣(dfs)矩陣