介紹
讀者對於本系列第一篇文章的迴應,讓我感到很興奮。感謝大家正面的反饋。我想把本系列繼續下去,重點介紹其他的一些你經常使用Excel完成的任務,並且展示給你如何在pandas 中使用相同的功能。
在第一篇文章中,我著重介紹了Excel中常見的數學計算工作,以及在pandas如何完成這些工作。在本文中,我們將著重介紹一些常見的選擇和篩選任務,並且介紹如何在pandas中完成同樣的事情。
設定
如果您想要繼續下去,您可以下載本excel檔案。
匯入pandas和numpy模組。
1 2 |
import pandas as pd import numpy as np |
匯入我們樣本公司銷售年銷售額的Excel檔案。
1 |
df = pd.read_excel("sample-salesv3.xlsx") |
快速瀏覽一下資料型別,以確保所以事情都能如預期一樣執行。
1 |
df.dtypes |
1 2 3 4 5 6 7 8 |
account number int64 name object sku object quantity int64 unit price float64 ext price float64 date object dtype: object |
你會注意到,我們的date列,顯示的是一個通用物件
。我們準備把它轉換為日期物件,來簡化將來會用到的一些選擇操作。
1 2 |
df['date'] = pd.to_datetime(df['date']) df.head() |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
0 | 740150 | Barton LLC | B1-20000 | 39 | 86.69 | 3380.91 | 2014-01-01 07:21:51 |
1 | 714466 | Trantow-Barrows | S2-77896 | -1 | 63.16 | -63.16 | 2014-01-01 10:00:47 |
2 | 218895 | Kulas Inc | B1-69924 | 23 | 90.70 | 2086.10 | 2014-01-01 13:24:58 |
3 | 307599 | Kassulke, Ondricka and Metz | S1-65481 | 41 | 21.05 | 863.05 | 2014-01-01 15:05:22 |
4 | 412290 | Jerde-Hilpert | S2-34077 | 6 | 83.21 | 499.26 | 2014-01-01 23:26:55 |
1 |
df.dtypes |
1 2 3 4 5 6 7 8 |
account number int64 name object sku object quantity int64 unit price float64 ext price float64 date datetime64[ns] dtype: object |
現在,data變成了一個datetime型別的物件,這對於將來的操作是很有用的。
篩選資料
我認為在Excel中最方便的功能是篩選。我想幾乎每一次有人拿到一個任意大小的Excel檔案,當他們想要篩選資料的時候,都會使用這個功能。
如圖,對本資料集使用該功能:
同Excel中的篩選功能一樣,你可以使用pandas來篩選和選擇某個特定資料的子集。
比方說,如果我們僅僅想檢視一個特定的賬號,我們可以簡單是在Excel中完成,或是使用pandas完成操作。
下面是Excel的篩選解決方案:
在pandas中執行相關操作比Excel中更加直觀。注意,我將會使用head
函式來顯示前面幾個結果。這僅僅是為了讓本文保持簡短。
1 |
df[df["account number"]==307599].head() |
你還可以以數值為基準來進行篩選。我就不再舉任何Excel的例子了。我相信你能明白。
1 |
df[df["quantity"] > 22].head() |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
0 | 740150 | Barton LLC | B1-20000 | 39 | 86.69 | 3380.91 | 2014-01-01 07:21:51 |
2 | 218895 | Kulas Inc | B1-69924 | 23 | 90.70 | 2086.10 | 2014-01-01 13:24:58 |
3 | 307599 | Kassulke, Ondricka and Metz | S1-65481 | 41 | 21.05 | 863.05 | 2014-01-01 15:05:22 |
14 | 737550 | Fritsch, Russel and Anderson | B1-53102 | 23 | 71.56 | 1645.88 | 2014-01-04 08:57:48 |
15 | 239344 | Stokes LLC | S1-06532 | 34 | 71.51 | 2431.34 | 2014-01-04 11:34:58 |
如果我們想要更多複雜的篩選,我們可以可以使用map
來以多重標準進行篩選。在這個例子中,從B1中查詢以“sku”中起始的專案。
1 |
df[df["sku"].map(lambda x: x.startswith('B1'))].head() |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
0 | 740150 | Barton LLC | B1-20000 | 39 | 86.69 | 3380.91 | 2014-01-01 07:21:51 |
2 | 218895 | Kulas Inc | B1-69924 | 23 | 90.70 | 2086.10 | 2014-01-01 13:24:58 |
6 | 218895 | Kulas Inc | B1-65551 | 2 | 31.10 | 62.20 | 2014-01-02 10:57:23 |
14 | 737550 | Fritsch, Russel and Anderson | B1-53102 | 23 | 71.56 | 1645.88 | 2014-01-04 08:57:48 |
17 | 239344 | Stokes LLC | B1-50809 | 14 | 16.23 | 227.22 | 2014-01-04 22:14:32 |
把兩個或更多的語句連線起來很簡單,用&就可以。
1 |
df[df["sku"].map(lambda x: x.startswith('B1')) & (df["quantity"] > 22)].head() |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
0 | 740150 | Barton LLC | B1-20000 | 39 | 86.69 | 3380.91 | 2014-01-01 07:21:51 |
2 | 218895 | Kulas Inc | B1-69924 | 23 | 90.70 | 2086.10 | 2014-01-01 13:24:58 |
14 | 737550 | Fritsch, Russel and Anderson | B1-53102 | 23 | 71.56 | 1645.88 | 2014-01-04 08:57:48 |
26 | 737550 | Fritsch, Russel and Anderson | B1-53636 | 42 | 42.06 | 1766.52 | 2014-01-08 00:02:11 |
31 | 714466 | Trantow-Barrows | B1-33087 | 32 | 19.56 | 625.92 | 2014-01-09 10:16:32 |
pandas支援的另外一個很有用的函式是isin
。它使得我們可以定義一個列表,裡面包含我們所希望查詢的值
在這個例子中,我們查詢包含兩個特定account number值的全部專案。
1 |
df[df["account number"].isin([714466,218895])].head() |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
1 | 714466 | Trantow-Barrows | S2-77896 | -1 | 63.16 | -63.16 | 2014-01-01 10:00:47 |
2 | 218895 | Kulas Inc | B1-69924 | 23 | 90.70 | 2086.10 | 2014-01-01 13:24:58 |
5 | 714466 | Trantow-Barrows | S2-77896 | 17 | 87.63 | 1489.71 | 2014-01-02 10:07:15 |
6 | 218895 | Kulas Inc | B1-65551 | 2 | 31.10 | 62.20 | 2014-01-02 10:57:23 |
8 | 714466 | Trantow-Barrows | S1-50961 | 22 | 84.09 | 1849.98 | 2014-01-03 11:29:02 |
pandas支援的另外一個函式叫做query
,它使得我們可以有效的再資料集中選擇資料。使用它需要安裝numexpr ,所以請確保你在進行下面步驟前已經進行了安裝。
如果你想要通過名字來得到一個消費者列表,你可以使用query來完成,和前面展示的python語法類似。
1 |
df.query('name == ["Kulas Inc","Barton LLC"]').head() |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
0 | 740150 | Barton LLC | B1-20000 | 39 | 86.69 | 3380.91 | 2014-01-01 07:21:51 |
2 | 218895 | Kulas Inc | B1-69924 | 23 | 90.70 | 2086.10 | 2014-01-01 13:24:58 |
6 | 218895 | Kulas Inc | B1-65551 | 2 | 31.10 | 62.20 | 2014-01-02 10:57:23 |
33 | 218895 | Kulas Inc | S1-06532 | 3 | 22.36 | 67.08 | 2014-01-09 23:58:27 |
36 | 218895 | Kulas Inc | S2-34077 | 16 | 73.04 | 1168.64 | 2014-01-10 12:07:30 |
這裡只是做個簡單的示例,query函式能做到的還不止這些。我在此展示這些函式的用法,以便當你有需要的時候,會意識到可以用它。
處理日期
使用pandas,你可以對日期進行更加複雜的篩選。在我們處理日期前,我建議你把日期欄進行一個排序,以便返回的結果如你所願。
1 2 |
df = df.sort('date') df.head() |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
0 | 740150 | Barton LLC | B1-20000 | 39 | 86.69 | 3380.91 | 2014-01-01 07:21:51 |
1 | 714466 | Trantow-Barrows | S2-77896 | -1 | 63.16 | -63.16 | 2014-01-01 10:00:47 |
2 | 218895 | Kulas Inc | B1-69924 | 23 | 90.70 | 2086.10 | 2014-01-01 13:24:58 |
3 | 307599 | Kassulke, Ondricka and Metz | S1-65481 | 41 | 21.05 | 863.05 | 2014-01-01 15:05:22 |
4 | 412290 | Jerde-Hilpert | S2-34077 | 6 | 83.21 | 499.26 | 2014-01-01 23:26:55 |
在操作日期前,為您展示python的篩選語法。
1 |
df[df['date'] >='20140905'].head() |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
1042 | 163416 | Purdy-Kunde | B1-38851 | 41 | 98.69 | 4046.29 | 2014-09-05 01:52:32 |
1043 | 714466 | Trantow-Barrows | S1-30248 | 1 | 37.16 | 37.16 | 2014-09-05 06:17:19 |
1044 | 729833 | Koepp Ltd | S1-65481 | 48 | 16.04 | 769.92 | 2014-09-05 08:54:41 |
1045 | 729833 | Koepp Ltd | S2-11481 | 6 | 26.50 | 159.00 | 2014-09-05 16:33:15 |
1046 | 737550 | Fritsch, Russel and Anderson | B1-33364 | 4 | 76.44 | 305.76 | 2014-09-06 08:59:08 |
1 |
df[df['date'] >='2014-03'].head() |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
242 | 163416 | Purdy-Kunde | S1-30248 | 19 | 65.03 | 1235.57 | 2014-03-01 16:07:40 |
243 | 527099 | Sanford and Sons | S2-82423 | 3 | 76.21 | 228.63 | 2014-03-01 17:18:01 |
244 | 527099 | Sanford and Sons | B1-50809 | 8 | 70.78 | 566.24 | 2014-03-01 18:53:09 |
245 | 737550 | Fritsch, Russel and Anderson | B1-50809 | 20 | 50.11 | 1002.20 | 2014-03-01 23:47:17 |
246 | 688981 | Keeling LLC | B1-86481 | -1 | 97.16 | -97.16 | 2014-03-02 01:46:44 |
當然,你可以把篩選標準連結起來。
1 |
df[(df['date'] >='20140701') & (df['date'] <= '20140715')].head() |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
778 | 737550 | Fritsch, Russel and Anderson | S1-65481 | 35 | 70.51 | 2467.85 | 2014-07-01 00:21:58 |
779 | 218895 | Kulas Inc | S1-30248 | 9 | 16.56 | 149.04 | 2014-07-01 00:52:38 |
780 | 163416 | Purdy-Kunde | S2-82423 | 44 | 68.27 | 3003.88 | 2014-07-01 08:15:52 |
781 | 672390 | Kuhn-Gusikowski | B1-04202 | 48 | 99.39 | 4770.72 | 2014-07-01 11:12:13 |
782 | 642753 | Pollich LLC | S2-23246 | 1 | 51.29 | 51.29 | 2014-07-02 04:02:39 |
由於pandas可以理解日期列,所以可以將日期值設為不同的格式,都會得到正確的結果。
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
1168 | 307599 | Kassulke, Ondricka and Metz | S2-23246 | 6 | 88.90 | 533.40 | 2014-10-08 06:19:50 |
1169 | 424914 | White-Trantow | S2-10342 | 25 | 58.54 | 1463.50 | 2014-10-08 07:31:40 |
1170 | 163416 | Purdy-Kunde | S1-27722 | 22 | 34.41 | 757.02 | 2014-10-08 09:01:18 |
1171 | 163416 | Purdy-Kunde | B1-33087 | 7 | 79.29 | 555.03 | 2014-10-08 15:39:13 |
1172 | 672390 | Kuhn-Gusikowski | B1-38851 | 30 | 94.64 | 2839.20 | 2014-10-09 00:22:33 |
1 |
df[df['date'] >= '10-10-2014'].head() |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
1174 | 257198 | Cronin, Oberbrunner and Spencer | S2-34077 | 13 | 12.24 | 159.12 | 2014-10-10 02:59:06 |
1175 | 740150 | Barton LLC | S1-65481 | 28 | 53.00 | 1484.00 | 2014-10-10 15:08:53 |
1176 | 146832 | Kiehn-Spinka | S1-27722 | 15 | 64.39 | 965.85 | 2014-10-10 18:24:01 |
1177 | 257198 | Cronin, Oberbrunner and Spencer | S2-16558 | 3 | 35.34 | 106.02 | 2014-10-11 01:48:13 |
1178 | 737550 | Fritsch, Russel and Anderson | B1-53636 | 10 | 56.95 | 569.50 | 2014-10-11 10:25:53 |
當操作時間序列資料時,如果你把資料進行轉化,以日期作為索引,我們可以做一些變相的篩選。
使用set_index
來設定新的索引。
1 2 |
df2 = df.set_index(['date']) df2.head() |
account number | name | sku | quantity | unit price | ext price | |
---|---|---|---|---|---|---|
date | ||||||
2014-01-01 07:21:51 | 740150 | Barton LLC | B1-20000 | 39 | 86.69 | 3380.91 |
2014-01-01 10:00:47 | 714466 | Trantow-Barrows | S2-77896 | -1 | 63.16 | -63.16 |
2014-01-01 13:24:58 | 218895 | Kulas Inc | B1-69924 | 23 | 90.70 | 2086.10 |
2014-01-01 15:05:22 | 307599 | Kassulke, Ondricka and Metz | S1-65481 | 41 | 21.05 | 863.05 |
2014-01-01 23:26:55 | 412290 | Jerde-Hilpert | S2-34077 | 6 | 83.21 | 499.26 |
你可以通過切分資料來獲取一段區間。
1 |
df2["20140101":"20140201"].head() |
account number | name | sku | quantity | unit price | ext price | |
---|---|---|---|---|---|---|
date | ||||||
2014-01-01 07:21:51 | 740150 | Barton LLC | B1-20000 | 39 | 86.69 | 3380.91 |
2014-01-01 10:00:47 | 714466 | Trantow-Barrows | S2-77896 | -1 | 63.16 | -63.16 |
2014-01-01 13:24:58 | 218895 | Kulas Inc | B1-69924 | 23 | 90.70 | 2086.10 |
2014-01-01 15:05:22 | 307599 | Kassulke, Ondricka and Metz | S1-65481 | 41 | 21.05 | 863.05 |
2014-01-01 23:26:55 | 412290 | Jerde-Hilpert | S2-34077 | 6 | 83.21 | 499.26 |
再一次的,我們可以使用不同的日期表示方法來避免模稜兩可的日期命名慣例。
1 |
df2["2014-Jan-1":"2014-Feb-1"].head() |
account number | name | sku | quantity | unit price | ext price | |
---|---|---|---|---|---|---|
date | ||||||
2014-01-01 07:21:51 | 740150 | Barton LLC | B1-20000 | 39 | 86.69 | 3380.91 |
2014-01-01 10:00:47 | 714466 | Trantow-Barrows | S2-77896 | -1 | 63.16 | -63.16 |
2014-01-01 13:24:58 | 218895 | Kulas Inc | B1-69924 | 23 | 90.70 | 2086.10 |
2014-01-01 15:05:22 | 307599 | Kassulke, Ondricka and Metz | S1-65481 | 41 | 21.05 | 863.05 |
2014-01-01 23:26:55 | 412290 | Jerde-Hilpert | S2-34077 | 6 | 83.21 | 499.26 |
1 |
df2["2014-Jan-1":"2014-Feb-1"].tail() |
account number | name | sku | quantity | unit price | ext price | |
---|---|---|---|---|---|---|
date | ||||||
2014-01-31 22:51:18 | 383080 | Will LLC | B1-05914 | 43 | 80.17 | 3447.31 |
2014-02-01 09:04:59 | 383080 | Will LLC | B1-20000 | 7 | 33.69 | 235.83 |
2014-02-01 11:51:46 | 412290 | Jerde-Hilpert | S1-27722 | 11 | 21.12 | 232.32 |
2014-02-01 17:24:32 | 412290 | Jerde-Hilpert | B1-86481 | 3 | 35.99 | 107.97 |
2014-02-01 19:56:48 | 412290 | Jerde-Hilpert | B1-20000 | 23 | 78.90 | 1814.70 |
1 |
df2["2014"].head() |
account number | name | sku | quantity | unit price | ext price | |
---|---|---|---|---|---|---|
date | ||||||
2014-01-01 07:21:51 | 740150 | Barton LLC | B1-20000 | 39 | 86.69 | 3380.91 |
2014-01-01 10:00:47 | 714466 | Trantow-Barrows | S2-77896 | -1 | 63.16 | -63.16 |
2014-01-01 13:24:58 | 218895 | Kulas Inc | B1-69924 | 23 | 90.70 | 2086.10 |
2014-01-01 15:05:22 | 307599 | Kassulke, Ondricka and Metz | S1-65481 | 41 | 21.05 | 863.05 |
2014-01-01 23:26:55 | 412290 | Jerde-Hilpert | S2-34077 | 6 | 83.21 | 499.26 |
1 |
df2["2014-Dec"].head() |
account number | name | sku | quantity | unit price | ext price | |
---|---|---|---|---|---|---|
date | ||||||
2014-12-01 20:15:34 | 714466 | Trantow-Barrows | S1-82801 | 3 | 77.97 | 233.91 |
2014-12-02 20:00:04 | 146832 | Kiehn-Spinka | S2-23246 | 37 | 57.81 | 2138.97 |
2014-12-03 04:43:53 | 218895 | Kulas Inc | S2-77896 | 30 | 77.44 | 2323.20 |
2014-12-03 06:05:43 | 141962 | Herman LLC | B1-53102 | 20 | 26.12 | 522.40 |
2014-12-03 14:17:34 | 642753 | Pollich LLC | B1-53636 | 19 | 71.21 | 1352.99 |
正如你所見到的那樣,在進行基於日期的排序或者篩選時,可以有很多選擇。
額外的字串方法
Pandas同樣已經支援了向量字串方法。
如果我們想識別出sku欄中包含某一特定值的全部值。我們可以使用str.contains
。在這個例子中,我們已知sku總是以一種相同的方式表示,所以B1僅會出現在sku的前面。你需要理解你的資料來保證你能夠得到你想要的結果。
1 |
df[df['sku'].str.contains('B1')].head() |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
0 | 740150 | Barton LLC | B1-20000 | 39 | 86.69 | 3380.91 | 2014-01-01 07:21:51 |
2 | 218895 | Kulas Inc | B1-69924 | 23 | 90.70 | 2086.10 | 2014-01-01 13:24:58 |
6 | 218895 | Kulas Inc | B1-65551 | 2 | 31.10 | 62.20 | 2014-01-02 10:57:23 |
14 | 737550 | Fritsch, Russel and Anderson | B1-53102 | 23 | 71.56 | 1645.88 | 2014-01-04 08:57:48 |
17 | 239344 | Stokes LLC | B1-50809 | 14 | 16.23 | 227.22 | 2014-01-04 22:14:32 |
我們可以把查詢連線起來並且使用排序來控制資料的順序。
1 |
df[(df['sku'].str.contains('B1-531')) & (df['quantity']>40)].sort(columns=['quantity','name'],ascending=[0,1]) |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
684 | 642753 | Pollich LLC | B1-53102 | 46 | 26.07 | 1199.22 | 2014-06-08 19:33:33 |
792 | 688981 | Keeling LLC | B1-53102 | 45 | 41.19 | 1853.55 | 2014-07-04 21:42:22 |
176 | 383080 | Will LLC | B1-53102 | 45 | 89.22 | 4014.90 | 2014-02-11 04:14:09 |
1213 | 604255 | Halvorson, Crona and Champlin | B1-53102 | 41 | 55.05 | 2257.05 | 2014-10-18 19:27:01 |
1215 | 307599 | Kassulke, Ondricka and Metz | B1-53102 | 41 | 93.70 | 3841.70 | 2014-10-18 23:25:10 |
1128 | 714466 | Trantow-Barrows | B1-53102 | 41 | 55.68 | 2282.88 | 2014-09-27 10:42:48 |
1001 | 424914 | White-Trantow | B1-53102 | 41 | 81.25 | 3331.25 | 2014-08-26 11:44:30 |
彩蛋任務
在Excel中,我發現我自己經常會嘗試從一個冗長的列表中,得到一個包含不重複項的小列表。在Excel中這件事情需要分幾步來完成,但是在Pandas中卻非常簡單。有一種方式是使用Excel中提供的高階篩選工具來完成。
在pandas中,我們對某列使用這個unique函式來獲取這個列表。
1 |
df["name"].unique() |
1 2 3 4 5 6 7 8 |
array([u'Barton LLC', u'Trantow-Barrows', u'Kulas Inc', u'Kassulke, Ondricka and Metz', u'Jerde-Hilpert', u'Koepp Ltd', u'Fritsch, Russel and Anderson', u'Kiehn-Spinka', u'Keeling LLC', u'Frami, Hills and Schmidt', u'Stokes LLC', u'Kuhn-Gusikowski', u'Herman LLC', u'White-Trantow', u'Sanford and Sons', u'Pollich LLC', u'Will LLC', u'Cronin, Oberbrunner and Spencer', u'Halvorson, Crona and Champlin', u'Purdy-Kunde'], dtype=object) If we wanted to include the account number, we could use drop_duplicates . |
如果我們想要包含賬戶號,我們可以使用drop_duplicates
。
1 |
df.drop_duplicates(subset=["account number","name"]).head() |
account number | name | sku | quantity | unit price | ext price | date | |
---|---|---|---|---|---|---|---|
0 | 740150 | Barton LLC | B1-20000 | 39 | 86.69 | 3380.91 | 2014-01-01 07:21:51 |
1 | 714466 | Trantow-Barrows | S2-77896 | -1 | 63.16 | -63.16 | 2014-01-01 10:00:47 |
2 | 218895 | Kulas Inc | B1-69924 | 23 | 90.70 | 2086.10 | 2014-01-01 13:24:58 |
3 | 307599 | Kassulke, Ondricka and Metz | S1-65481 | 41 | 21.05 | 863.05 | 2014-01-01 15:05:22 |
4 | 412290 | Jerde-Hilpert | S2-34077 | 6 | 83.21 | 499.26 | 2014-01-01 23:26:55 |
很顯然我們放入了的資料超過了我們的需要,得到了一些無用的資訊,因此,使用ix
來僅僅選擇第一第二列。
1 |
df.drop_duplicates(subset=["account number","name"]).ix[:,[0,1]] |
account number | name | |
---|---|---|
0 | 740150 | Barton LLC |
1 | 714466 | Trantow-Barrows |
2 | 218895 | Kulas Inc |
3 | 307599 | Kassulke, Ondricka and Metz |
4 | 412290 | Jerde-Hilpert |
7 | 729833 | Koepp Ltd |
9 | 737550 | Fritsch, Russel and Anderson |
10 | 146832 | Kiehn-Spinka |
11 | 688981 | Keeling LLC |
12 | 786968 | Frami, Hills and Schmidt |
15 | 239344 | Stokes LLC |
16 | 672390 | Kuhn-Gusikowski |
18 | 141962 | Herman LLC |
20 | 424914 | White-Trantow |
21 | 527099 | Sanford and Sons |
30 | 642753 | Pollich LLC |
37 | 383080 | Will LLC |
51 | 257198 | Cronin, Oberbrunner and Spencer |
67 | 604255 | Halvorson, Crona and Champlin |
106 | 163416 | Purdy-Kunde |
我認為這個記住這個單獨的命令比記憶Excel的各步操作更容易。
如果你想要檢視我的筆記 請隨意下載。
結論
在我發表了我的第一篇文章之後,Dave Proffer在Twitter上轉發了我的文章並評論到“打破你#excel沉迷的一些好技巧”。我覺得這句話非常準確,它描述了在我們的生活中使用Excel是有多麼的頻繁。大多數的人只管伸手去用卻從來沒有意識到它的侷限性。我希望這個系列的文章可以幫助大家認識到我們還有其他的替代工具,Python+Pandas是一個極其強大的組合。
打賞支援我翻譯更多好文章,謝謝!
打賞譯者
打賞支援我翻譯更多好文章,謝謝!
任選一種支付方式