一、基礎程式碼準備
建立一個實體類,該實體類有五個屬性。下面的程式碼使用了lombok的註解Data、AllArgsConstructor,這樣我們就不用寫get、set方法和全參建構函式了。lombok會幫助我們在編譯期生成這些模式化的程式碼。
@Data
@AllArgsConstructor
public class Employee {
private Integer id;
private Integer age; //年齡
private String gender; //性別
private String firstName;
private String lastName;
}
寫一個測試類,這個測試類的內容也很簡單,新建十個Employee 物件
public class StreamFilterPredicate {
public static void main(String[] args){
Employee e1 = new Employee(1,23,"M","Rick","Beethovan");
Employee e2 = new Employee(2,13,"F","Martina","Hengis");
Employee e3 = new Employee(3,43,"M","Ricky","Martin");
Employee e4 = new Employee(4,26,"M","Jon","Lowman");
Employee e5 = new Employee(5,19,"F","Cristine","Maria");
Employee e6 = new Employee(6,15,"M","David","Feezor");
Employee e7 = new Employee(7,68,"F","Melissa","Roy");
Employee e8 = new Employee(8,79,"M","Alex","Gussin");
Employee e9 = new Employee(9,15,"F","Neetu","Singh");
Employee e10 = new Employee(10,45,"M","Naveen","Jain");
List<Employee> employees = Arrays.asList(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10);
List<Employee> filtered = employees.stream()
.filter(e -> e.getAge() > 70 && e.getGender().equals("M"))
.collect(Collectors.toList());
System.out.println(filtered);
}
}
需要注意的是上面的filter傳入了lambda表示式(之前的章節我們已經講過了),表達過濾年齡大於70並且男性的Employee員工。輸出如下:
[Employee(id=8, age=79, gender=M, firstName=Alex, lastName=Gussin)]
二、什麼是謂詞邏輯?
下面要說我們的重點了,通過之前的章節的講解,我們已經知道lambda表示式表達的是一個匿名介面函式的實現。那具體到Stream.filter()中,它表達的是什麼呢?看下圖:可以看出它表達的是一個Predicate介面,在英語中這個單詞的意思是:謂詞。
什麼是謂詞?(百度百科)
什麼是謂詞邏輯?
WHERE 和 AND 限定了主語employee是什麼,那麼WHERE和AND語句所代表的邏輯就是謂詞邏輯
SELECT *
FROM employee
WHERE age > 70
AND gender = 'M'
三、謂詞邏輯的複用
通常情況下,filter函式中lambda表示式為一次性使用的謂詞邏輯。如果我們的謂詞邏輯需要被多處、多場景、多程式碼中使用,通常將它抽取出來單獨定義到它所限定的主語實體中。
比如:將下面的謂詞邏輯定義在Employee實體class中。
public static Predicate<Employee> ageGreaterThan70 = x -> x.getAge() >70;
public static Predicate<Employee> genderM = x -> x.getGender().equals("M");
3.1.and語法(並集)
List<Employee> filtered = employees.stream()
.filter(Employee.ageGreaterThan70.and(Employee.genderM))
.collect(Collectors.toList());
輸出如下:
[Employee(id=8, age=79, gender=M, firstName=Alex, lastName=Gussin)]
3.2.or語法(交集)
List<Employee> filtered = employees.stream()
.filter(Employee.ageGreaterThan70.or(Employee.genderM))
.collect(Collectors.toList());
輸出如下:實際上就是年齡大於70的和所有的男性(由於79的那位也是男性,所以就是所有的男性)
[Employee(id=1, age=23, gender=M, firstName=Rick, lastName=Beethovan), Employee(id=3, age=43, gender=M, firstName=Ricky, lastName=Martin), Employee(id=4, age=26, gender=M, firstName=Jon, lastName=Lowman), Employee(id=6, age=15, gender=M, firstName=David, lastName=Feezor), Employee(id=8, age=79, gender=M, firstName=Alex, lastName=Gussin), Employee(id=10, age=45, gender=M, firstName=Naveen, lastName=Jain)]
3.3.negate語法(取反)
List<Employee> filtered = employees.stream()
.filter(Employee.ageGreaterThan70.or(Employee.genderM).negate())
.collect(Collectors.toList());
輸出如下:把上一小節程式碼的結果取反,實際上就是所有的女性
[Employee(id=2, age=13, gender=F, firstName=Martina, lastName=Hengis), Employee(id=5, age=19, gender=F, firstName=Cristine, lastName=Maria), Employee(id=7, age=68, gender=F, firstName=Melissa, lastName=Roy), Employee(id=9, age=15, gender=F, firstName=Neetu, lastName=Singh)]
歡迎關注我的部落格,裡面有很多精品合集
- 本文轉載註明出處(必須帶連線,不能只轉文字):字母哥部落格。
覺得對您有幫助的話,幫我點贊、分享!您的支援是我不竭的創作動力! 。另外,筆者最近一段時間輸出瞭如下的精品內容,期待您的關注。