RocketMQ中Broker的刷盤原始碼分析

鬆餅人發表於2019-08-07

上一篇部落格的最後簡單提了下CommitLog的刷盤  【RocketMQ中Broker的訊息儲存原始碼分析】 (這篇部落格和上一篇有很大的聯絡)


Broker的CommitLog刷盤會啟動一個執行緒,不停地將緩衝區的內容寫入磁碟(CommitLog檔案)中,主要分為非同步刷盤和同步刷盤

非同步刷盤又可以分為兩種方式:
①快取到mappedByteBuffer -> 寫入磁碟(包括同步刷盤)
②快取到writeBuffer -> 快取到fileChannel -> 寫入磁碟 (前面說過的開啟記憶體位元組緩衝區情況下)

 

CommitLog的兩種刷盤模式:

1 public enum FlushDiskType {
2     SYNC_FLUSH,
3     ASYNC_FLUSH
4 }

同步和非同步,同步刷盤由GroupCommitService實現,非同步刷盤由FlushRealTimeService實現,預設採用非同步刷盤

在採用非同步刷盤的模式下,若是開啟記憶體位元組緩衝區,那麼會在FlushRealTimeService的基礎上開啟CommitRealTimeService

 

同步刷盤:

啟動GroupCommitService執行緒:

 1 public void run() {
 2     CommitLog.log.info(this.getServiceName() + " service started");
 3 
 4     while (!this.isStopped()) {
 5         try {
 6             this.waitForRunning(10);
 7             this.doCommit();
 8         } catch (Exception e) {
 9             CommitLog.log.warn(this.getServiceName() + " service has exception. ", e);
10         }
11     }
12 
13     // Under normal circumstances shutdown, wait for the arrival of the
14     // request, and then flush
15     try {
16         Thread.sleep(10);
17     } catch (InterruptedException e) {
18         CommitLog.log.warn("GroupCommitService Exception, ", e);
19     }
20 
21     synchronized (this) {
22         this.swapRequests();
23     }
24 
25     this.doCommit();
26 
27     CommitLog.log.info(this.getServiceName() + " service end");
28 }

通過迴圈中的doCommit不斷地進行刷盤


doCommit方法:

 1 private void doCommit() {
 2     synchronized (this.requestsRead) {
 3         if (!this.requestsRead.isEmpty()) {
 4             for (GroupCommitRequest req : this.requestsRead) {
 5                 // There may be a message in the next file, so a maximum of
 6                 // two times the flush
 7                 boolean flushOK = false;
 8                 for (int i = 0; i < 2 && !flushOK; i++) {
 9                     flushOK = CommitLog.this.mappedFileQueue.getFlushedWhere() >= req.getNextOffset();
10 
11                     if (!flushOK) {
12                         CommitLog.this.mappedFileQueue.flush(0);
13                     }
14                 }
15 
16                 req.wakeupCustomer(flushOK);
17             }
18 
19             long storeTimestamp = CommitLog.this.mappedFileQueue.getStoreTimestamp();
20             if (storeTimestamp > 0) {
21                 CommitLog.this.defaultMessageStore.getStoreCheckpoint().setPhysicMsgTimestamp(storeTimestamp);
22             }
23 
24             this.requestsRead.clear();
25         } else {
26             // Because of individual messages is set to not sync flush, it
27             // will come to this process
28             CommitLog.this.mappedFileQueue.flush(0);
29         }
30     }
31 }

其中在GroupCommitService中管理著兩張List:

1 private volatile List<GroupCommitRequest> requestsWrite = new ArrayList<GroupCommitRequest>();
2 private volatile List<GroupCommitRequest> requestsRead = new ArrayList<GroupCommitRequest>();

GroupCommitRequest中封裝了一個Offset

1 private final long nextOffset;

 


這裡就需要看到上一篇部落格結尾提到的handleDiskFlush方法:

 1 public void handleDiskFlush(AppendMessageResult result, PutMessageResult putMessageResult, MessageExt messageExt) {
 2     // Synchronization flush
 3     if (FlushDiskType.SYNC_FLUSH == this.defaultMessageStore.getMessageStoreConfig().getFlushDiskType()) {
 4         final GroupCommitService service = (GroupCommitService) this.flushCommitLogService;
 5         if (messageExt.isWaitStoreMsgOK()) {
 6             GroupCommitRequest request = new GroupCommitRequest(result.getWroteOffset() + result.getWroteBytes());
 7             service.putRequest(request);
 8             boolean flushOK = request.waitForFlush(this.defaultMessageStore.getMessageStoreConfig().getSyncFlushTimeout());
 9             if (!flushOK) {
10                 log.error("do groupcommit, wait for flush failed, topic: " + messageExt.getTopic() + " tags: " + messageExt.getTags()
11                     + " client address: " + messageExt.getBornHostString());
12                 putMessageResult.setPutMessageStatus(PutMessageStatus.FLUSH_DISK_TIMEOUT);
13             }
14         } else {
15             service.wakeup();
16         }
17     }
18     // Asynchronous flush
19     else {
20         if (!this.defaultMessageStore.getMessageStoreConfig().isTransientStorePoolEnable()) {
21             flushCommitLogService.wakeup();
22         } else {
23             commitLogService.wakeup();
24         }
25     }
26 }

這個方法的呼叫發生在Broker接收到來自Producer的訊息,並且完成了向ByteBuffer的寫入

可以看到,在同步刷盤SYNC_FLUSH模式下,會從AppendMessageResult 中取出WroteOffset以及WroteBytes從而計算出nextOffset,把這個nextOffset封裝到GroupCommitRequest中,然後通過GroupCommitService 的putRequest方法,將GroupCommitRequest新增到requestsWrite這個List中
putRequest方法:

1 public synchronized void putRequest(final GroupCommitRequest request) {
2     synchronized (this.requestsWrite) {
3         this.requestsWrite.add(request);
4     }
5     if (hasNotified.compareAndSet(false, true)) {
6         waitPoint.countDown(); // notify
7     }
8 }

在完成List的add操作後,會通過CAS操作修改hasNotified這個原子化的Boolean值,同時通過waitPoint的countDown進行喚醒操作,在後面會有用


由於這裡這裡是同步刷盤,所以需要通過GroupCommitRequest的waitForFlush方法,在超時時間內等待該記錄對應的刷盤完成
而非同步刷盤會通過wakeup方法喚醒刷盤任務,並沒有進行等待,這就是二者區別


回到doCommit方法中,這時會發現這裡是對requestsRead這條List進行的操作,而剛才是將記錄存放在requestsWrite這條List中的
這就和在run方法中的waitForRunning方法有關了:

 1 protected void waitForRunning(long interval) {
 2    if (hasNotified.compareAndSet(true, false)) {
 3         this.onWaitEnd();
 4         return;
 5     }
 6 
 7     //entry to wait
 8     waitPoint.reset();
 9 
10     try {
11         waitPoint.await(interval, TimeUnit.MILLISECONDS);
12     } catch (InterruptedException e) {
13         log.error("Interrupted", e);
14     } finally {
15         hasNotified.set(false);
16         this.onWaitEnd();
17     }
18 }

這裡通過CAS操作修改hasNotified值,從而呼叫onWaitEnd方法;如果修改失敗,則因為await進入阻塞,等待上面所說的putRequest方法將其喚醒,也就是說當Producer傳送的訊息被快取成功後,呼叫handleDiskFlush方法後,喚醒刷盤線工作,當然刷盤執行緒在達到超時時間interval後也會喚醒


再來看看onWaitEnd方法:

1 protected void onWaitEnd() {
2     this.swapRequests();
3 }
4 
5 private void swapRequests() {
6     List<GroupCommitRequest> tmp = this.requestsWrite;
7     this.requestsWrite = this.requestsRead;
8     this.requestsRead = tmp;
9 }

可以看到,這裡是將兩個List進行了交換

這是一個非常有趣的做法,如果熟悉JVM的話,有沒有覺得這其實很像新生代的標記-清除演算法!
當刷盤執行緒阻塞的時候,requestsWrite中會填充記錄,當刷盤執行緒被喚醒工作的時候,首先會將requestsWrite和requestsRead進行交換,那麼此時的記錄就是從requestsRead中讀取的了,而同時requestsWrite會變為空的List,訊息記錄就會往這個空的List中填充,如此往復

可以看到doCommit方法中,當requestsRead不為空的時候,在最後會呼叫requestsRead的clear方法,由此證明了我上面的說法

 

仔細來看看是如何進行刷盤的:

 1 for (GroupCommitRequest req : this.requestsRead) {
 2    // There may be a message in the next file, so a maximum of
 3     // two times the flush
 4     boolean flushOK = false;
 5     for (int i = 0; i < 2 && !flushOK; i++) {
 6         flushOK = CommitLog.this.mappedFileQueue.getFlushedWhere() >= req.getNextOffset();
 7 
 8         if (!flushOK) {
 9             CommitLog.this.mappedFileQueue.flush(0);
10         }
11     }
12 
13     req.wakeupCustomer(flushOK);
14 }

通過遍歷requestsRead,可以到得到GroupCommitRequest封裝的NextOffset

其中flushedWhere是用來記錄上一次刷盤完成後的offset,若是上一次的刷盤位置大於等於NextOffset,就說明從NextOffset位置起始已經被重新整理過了,不需要重新整理,否則呼叫mappedFileQueue的flush方法進行刷盤

MappedFileQueue的flush方法:

 1 public boolean flush(final int flushLeastPages) {
 2     boolean result = true;
 3     MappedFile mappedFile = this.findMappedFileByOffset(this.flushedWhere, this.flushedWhere == 0);
 4     if (mappedFile != null) {
 5         long tmpTimeStamp = mappedFile.getStoreTimestamp();
 6         int offset = mappedFile.flush(flushLeastPages);
 7         long where = mappedFile.getFileFromOffset() + offset;
 8         result = where == this.flushedWhere;
 9         this.flushedWhere = where;
10         if (0 == flushLeastPages) {
11             this.storeTimestamp = tmpTimeStamp;
12         }
13     }
14 
15     return result;
16 }

這裡首先根據flushedWhere上一次刷盤完成後的offset,通過findMappedFileByOffset方法,找到CommitLog檔案的對映MappedFile
有關MappedFile及其相關操作在我之前的部落格中介紹過很多次,就不再累贅


再找到MappedFile後,呼叫其flush方法:

MappedFile的flush方法:

 1 public int flush(final int flushLeastPages) {
 2     if (this.isAbleToFlush(flushLeastPages)) {
 3         if (this.hold()) {
 4             int value = getReadPosition();
 5 
 6             try {
 7                 //We only append data to fileChannel or mappedByteBuffer, never both.
 8                 if (writeBuffer != null || this.fileChannel.position() != 0) {
 9                     this.fileChannel.force(false);
10                 } else {
11                     this.mappedByteBuffer.force();
12                 }
13             } catch (Throwable e) {
14                 log.error("Error occurred when force data to disk.", e);
15             }
16 
17             this.flushedPosition.set(value);
18             this.release();
19         } else {
20             log.warn("in flush, hold failed, flush offset = " + this.flushedPosition.get());
21             this.flushedPosition.set(getReadPosition());
22         }
23     }
24     return this.getFlushedPosition();
25 }


首先isAbleToFlush方法:

 1 private boolean isAbleToFlush(final int flushLeastPages) {
 2     int flush = this.flushedPosition.get();
 3     int write = getReadPosition();
 4 
 5     if (this.isFull()) {
 6         return true;
 7     }
 8 
 9     if (flushLeastPages > 0) {
10         return ((write / OS_PAGE_SIZE) - (flush / OS_PAGE_SIZE)) >= flushLeastPages;
11     }
12 
13     return write > flush;
14 }

其中flush記錄的是上一次完成重新整理後的位置,write記錄的是當前訊息內容寫入後的位置
當flushLeastPages 大於0的時候,通過:

1 return ((write / OS_PAGE_SIZE) - (flush / OS_PAGE_SIZE)) >= flushLeastPages;

可以計算出是否滿足page的要求,其中OS_PAGE_SIZE是4K,也就是說1個page大小是4k

由於這裡是同步刷盤,flushLeastPages是0,不對page要求,只要有快取有內容就會刷盤;但是在非同步刷盤中,flushLeastPages是4,也就是說,只有當快取的訊息至少是4(page個數)*4K(page大小)= 16K時,非同步刷盤才會將快取寫入檔案

 

回到MappedFile的flush方法,在通過isAbleToFlush檢查完寫入要求後

 1 int value = getReadPosition();
 2 try {
 3     //We only append data to fileChannel or mappedByteBuffer, never both.
 4     if (writeBuffer != null || this.fileChannel.position() != 0) {
 5         this.fileChannel.force(false);
 6     } else {
 7         this.mappedByteBuffer.force();
 8     }
 9 } catch (Throwable e) {
10     log.error("Error occurred when force data to disk.", e);
11 }
12 
13 this.flushedPosition.set(value);

首先通過getReadPosition獲取當前訊息內容寫入後的位置,由於是同步刷盤,所以這裡呼叫mappedByteBuffer的force方法,通過JDK的NIO操作,將mappedByteBuffer快取中的資料寫入CommitLog檔案中
最後更新flushedPosition的值


再回到MappedFileQueue的flush方法,在完成MappedFile的flush後,還需要更新flushedWhere的值

此時快取中的資料完成了持久化,同步刷盤結束

 

非同步刷盤:

①FlushCommitLogService:

 1 public void run() {
 2     CommitLog.log.info(this.getServiceName() + " service started");
 3 
 4     while (!this.isStopped()) {
 5         boolean flushCommitLogTimed = CommitLog.this.defaultMessageStore.getMessageStoreConfig().isFlushCommitLogTimed();
 6 
 7         int interval = CommitLog.this.defaultMessageStore.getMessageStoreConfig().getFlushIntervalCommitLog();
 8         int flushPhysicQueueLeastPages = CommitLog.this.defaultMessageStore.getMessageStoreConfig().getFlushCommitLogLeastPages();
 9 
10         int flushPhysicQueueThoroughInterval =
11             CommitLog.this.defaultMessageStore.getMessageStoreConfig().getFlushCommitLogThoroughInterval();
12 
13         boolean printFlushProgress = false;
14 
15         // Print flush progress
16         long currentTimeMillis = System.currentTimeMillis();
17         if (currentTimeMillis >= (this.lastFlushTimestamp + flushPhysicQueueThoroughInterval)) {
18             this.lastFlushTimestamp = currentTimeMillis;
19             flushPhysicQueueLeastPages = 0;
20             printFlushProgress = (printTimes++ % 10) == 0;
21         }
22 
23         try {
24             if (flushCommitLogTimed) {
25                 Thread.sleep(interval);
26             } else {
27                 this.waitForRunning(interval);
28             }
29 
30             if (printFlushProgress) {
31                 this.printFlushProgress();
32             }
33 
34             long begin = System.currentTimeMillis();
35             CommitLog.this.mappedFileQueue.flush(flushPhysicQueueLeastPages);
36             long storeTimestamp = CommitLog.this.mappedFileQueue.getStoreTimestamp();
37             if (storeTimestamp > 0) {
38                 CommitLog.this.defaultMessageStore.getStoreCheckpoint().setPhysicMsgTimestamp(storeTimestamp);
39             }
40             long past = System.currentTimeMillis() - begin;
41             if (past > 500) {
42                 log.info("Flush data to disk costs {} ms", past);
43             }
44         } catch (Throwable e) {
45             CommitLog.log.warn(this.getServiceName() + " service has exception. ", e);
46             this.printFlushProgress();
47         }
48     }
49 
50     // Normal shutdown, to ensure that all the flush before exit
51     boolean result = false;
52     for (int i = 0; i < RETRY_TIMES_OVER && !result; i++) {
53         result = CommitLog.this.mappedFileQueue.flush(0);
54         CommitLog.log.info(this.getServiceName() + " service shutdown, retry " + (i + 1) + " times " + (result ? "OK" : "Not OK"));
55     }
56 
57     this.printFlushProgress();
58 
59     CommitLog.log.info(this.getServiceName() + " service end");
60 }

flushCommitLogTimed:是否使用定時刷盤
interval:刷盤時間間隔,預設500ms
flushPhysicQueueLeastPages:page大小,預設4個
flushPhysicQueueThoroughInterval:徹底刷盤時間間隔,預設10s


首先根據lastFlushTimestamp(上一次刷盤時間)+ flushPhysicQueueThoroughInterval和當前時間比較,判斷是否需要進行一次徹底刷盤,若達到了需要則將flushPhysicQueueLeastPages置為0


接著根據flushCommitLogTimed判斷
當flushCommitLogTimed為true,使用sleep等待500ms
當flushCommitLogTimed為false,呼叫waitForRunning在超時時間為500ms下阻塞,其喚醒條件也就是在handleDiskFlush中的wakeup喚醒

最後,和同步刷盤一樣,呼叫mappedFileQueue的flush方法
只不過,這裡的flushPhysicQueueLeastPages決定了其是進行徹底重新整理,還是按4page(16K)的標準重新整理


②CommitRealTimeService
這種刷盤方式需要和FlushCommitLogService配合


CommitRealTimeService的run方法:

 1 public void run() {
 2    CommitLog.log.info(this.getServiceName() + " service started");
 3     while (!this.isStopped()) {
 4         int interval = CommitLog.this.defaultMessageStore.getMessageStoreConfig().getCommitIntervalCommitLog();
 5 
 6         int commitDataLeastPages = CommitLog.this.defaultMessageStore.getMessageStoreConfig().getCommitCommitLogLeastPages();
 7 
 8         int commitDataThoroughInterval =
 9             CommitLog.this.defaultMessageStore.getMessageStoreConfig().getCommitCommitLogThoroughInterval();
10 
11         long begin = System.currentTimeMillis();
12         if (begin >= (this.lastCommitTimestamp + commitDataThoroughInterval)) {
13             this.lastCommitTimestamp = begin;
14             commitDataLeastPages = 0;
15         }
16 
17         try {
18             boolean result = CommitLog.this.mappedFileQueue.commit(commitDataLeastPages);
19             long end = System.currentTimeMillis();
20             if (!result) {
21                 this.lastCommitTimestamp = end; // result = false means some data committed.
22                 //now wake up flush thread.
23                 flushCommitLogService.wakeup();
24             }
25 
26             if (end - begin > 500) {
27                 log.info("Commit data to file costs {} ms", end - begin);
28             }
29             this.waitForRunning(interval);
30         } catch (Throwable e) {
31             CommitLog.log.error(this.getServiceName() + " service has exception. ", e);
32         }
33     }
34 
35     boolean result = false;
36     for (int i = 0; i < RETRY_TIMES_OVER && !result; i++) {
37         result = CommitLog.this.mappedFileQueue.commit(0);
38         CommitLog.log.info(this.getServiceName() + " service shutdown, retry " + (i + 1) + " times " + (result ? "OK" : "Not OK"));
39     }
40     CommitLog.log.info(this.getServiceName() + " service end");
41 }

這裡的邏輯和FlushCommitLogService中相似,之不過引數略有不同

interval:提交時間間隔,預設200ms
commitDataLeastPages:page大小,預設4個
commitDataThoroughInterval:提交完成時間間隔,預設200ms

基本和FlushCommitLogService相似,只不過呼叫了mappedFileQueue的commit方法

 1 public boolean commit(final int commitLeastPages) {
 2     boolean result = true;
 3     MappedFile mappedFile = this.findMappedFileByOffset(this.committedWhere, this.committedWhere == 0);
 4     if (mappedFile != null) {
 5         int offset = mappedFile.commit(commitLeastPages);
 6         long where = mappedFile.getFileFromOffset() + offset;
 7         result = where == this.committedWhere;
 8         this.committedWhere = where;
 9     }
10 
11     return result;
12 }

這裡和mappedFileQueue的flush方法很相似,通過committedWhere尋找MappedFile

然後呼叫MappedFile的commit方法:

 1 public int commit(final int commitLeastPages) {
 2     if (writeBuffer == null) {
 3         //no need to commit data to file channel, so just regard wrotePosition as committedPosition.
 4         return this.wrotePosition.get();
 5     }
 6     if (this.isAbleToCommit(commitLeastPages)) {
 7         if (this.hold()) {
 8             commit0(commitLeastPages);
 9             this.release();
10         } else {
11             log.warn("in commit, hold failed, commit offset = " + this.committedPosition.get());
12         }
13     }
14 
15     // All dirty data has been committed to FileChannel.
16     if (writeBuffer != null && this.transientStorePool != null && this.fileSize == this.committedPosition.get()) {
17         this.transientStorePool.returnBuffer(writeBuffer);
18         this.writeBuffer = null;
19     }
20 
21     return this.committedPosition.get();
22 }

依舊和MappedFile的flush方法很相似,在isAbleToCommit檢查完page後呼叫commit0方法


MappedFile的commit0方法:

 1 protected void commit0(final int commitLeastPages) {
 2     int writePos = this.wrotePosition.get();
 3     int lastCommittedPosition = this.committedPosition.get();
 4 
 5     if (writePos - this.committedPosition.get() > 0) {
 6         try {
 7             ByteBuffer byteBuffer = writeBuffer.slice();
 8             byteBuffer.position(lastCommittedPosition);
 9             byteBuffer.limit(writePos);
10             this.fileChannel.position(lastCommittedPosition);
11             this.fileChannel.write(byteBuffer);
12             this.committedPosition.set(writePos);
13         } catch (Throwable e) {
14             log.error("Error occurred when commit data to FileChannel.", e);
15         }
16     }
17 }

 【RocketMQ中Broker的訊息儲存原始碼分析】 

中說過,當使用這種方式時,會先將訊息快取在writeBuffer中而不是之前的mappedByteBuffer
這裡就可以清楚地看到將writeBuffer中從lastCommittedPosition(上次提交位置)開始到writePos(快取訊息結束位置)的內容快取到了fileChannel中相同的位置,並沒有寫入磁碟
在快取到fileChannel後,會更新committedPosition值


回到commit方法,在向fileCfihannel快取完畢後,會檢查committedPosition是否達到了fileSize,也就是判斷writeBuffer中的內容是不是去全部提交完畢

若是全部提交,需要通過transientStorePool的returnBuffer方法來回收利用writeBuffer
transientStorePool其實是一個雙向佇列,由CommitLog來管理
TransientStorePool:

 1 public class TransientStorePool {
 2     private static final InternalLogger log = InternalLoggerFactory.getLogger(LoggerName.STORE_LOGGER_NAME);
 3 
 4     private final int poolSize;
 5     private final int fileSize;
 6     private final Deque<ByteBuffer> availableBuffers;
 7     private final MessageStoreConfig storeConfig;
 8 
 9     public TransientStorePool(final MessageStoreConfig storeConfig) {
10         this.storeConfig = storeConfig;
11         this.poolSize = storeConfig.getTransientStorePoolSize();
12         this.fileSize = storeConfig.getMapedFileSizeCommitLog();
13         this.availableBuffers = new ConcurrentLinkedDeque<>();
14     }
15     ......
16 }


returnBuffer方法:

1 public void returnBuffer(ByteBuffer byteBuffer) {
2     byteBuffer.position(0);
3     byteBuffer.limit(fileSize);
4     this.availableBuffers.offerFirst(byteBuffer);
5 }

這裡就可以清楚地看到byteBuffer確實被回收了

 

回到MappedFileQueue的commit方法:

 1 public boolean commit(final int commitLeastPages) {
 2     boolean result = true;
 3     MappedFile mappedFile = this.findMappedFileByOffset(this.committedWhere, this.committedWhere == 0);
 4     if (mappedFile != null) {
 5         int offset = mappedFile.commit(commitLeastPages);
 6         long where = mappedFile.getFileFromOffset() + offset;
 7         result = where == this.committedWhere;
 8         this.committedWhere = where;
 9     }
10 
11     return result;
12 }

在完成mappedFile的commit後,通過where和committedWhere來判斷是否真的向fileCfihannel快取了 ,只有確實快取了result才是false!
之後會更新committedWhere,並返回result

 

那麼回到CommitRealTimeService的run方法,在完成commit之後,會判斷result
只有真的向fileCfihannel快取後,才會呼叫flushCommitLogService的wakeup方法,也就是喚醒了FlushCommitLogService的刷盤執行緒

唯一和之前分析的FlushCommitLogService不同的地方是在MappedFile的flush方法中:

1 if (writeBuffer != null || this.fileChannel.position() != 0) {
2     this.fileChannel.force(false);
3 } else {
4     this.mappedByteBuffer.force();
5 }

之前在沒有開啟記憶體位元組緩衝區的情況下,是將mappedByteBuffer中的內容寫入磁碟
而這時,終於輪到fileChannel了

可以看到這裡的條件判斷,當writeBuffer不等與null,或者fileChannel的position不等與0
writeBuffer等於null的情況會在TransientStorePool對其回收之後


到這裡就可以明白開啟記憶體位元組緩衝區的情況下,其實是進行了兩次快取才寫入磁碟

 

至此,Broker的訊息持久化以及刷盤的整個過程完畢

相關文章