Java高階程式設計——MySQL索引實現及優化原理解析

架構師之路發表於2019-03-03

在MySQL中,索引屬於儲存引擎級別的概念,不同儲存引擎對索引的實現方式是不同的,本文主要討論MyISAM和InnoDB兩個儲存引擎的索引實現方式。

歡迎大家加入架構華山論劍:836442475 本群提供免費的學習指導 架構資料 以及免費的解答 不懂得問題都可以在本群提出來 之後還會有職業生涯規劃以及面試指導 進群修改群備註:開發年限-地區-經驗 方便架構師解答問題

MyISAM索引實現

MyISAM引擎使用B+Tree作為索引結構,葉節點的data域存放的是資料記錄的地址。下圖是MyISAM索引的原理圖:

Java高階程式設計——MySQL索引實現及優化原理解析

圖 1

這裡設表一共有三列,假設我們以Col1為主鍵,則圖1是一個MyISAM表的主索引(Primary key)示意。可以看出MyISAM的索引檔案僅僅儲存資料記錄的地址。在MyISAM中,主索引和輔助索引(Secondary key)在結構上沒有任何區別,只是主索引要求key是唯一的,而輔助索引的key可以重複。如果我們在Col2上建立一個輔助索引,則此索引的結構如下圖所示:

Java高階程式設計——MySQL索引實現及優化原理解析

圖 2

同樣也是一顆B+Tree,data域儲存資料記錄的地址。因此,MyISAM中索引檢索的演算法為首先按照B+Tree搜尋演算法搜尋索引,如果指定的Key存在,則取出其data域的值,然後以data域的值為地址,讀取相應資料記錄。

MyISAM的索引方式也叫做“非聚集”的,之所以這麼稱呼是為了與InnoDB的聚集索引區分。

InnoDB索引實現

雖然InnoDB也使用B+Tree作為索引結構,但具體實現方式卻與MyISAM截然不同。

第一個重大區別是InnoDB的資料檔案本身就是索引檔案。從上文知道,MyISAM索引檔案和資料檔案是分離的,索引檔案僅儲存資料記錄的地址。而在InnoDB中,表資料檔案本身就是按B+Tree組織的一個索引結構,這棵樹的葉節點data域儲存了完整的資料記錄。這個索引的key是資料表的主鍵,因此InnoDB表資料檔案本身就是主索引。

Java高階程式設計——MySQL索引實現及優化原理解析

圖 3

圖3是InnoDB主索引(同時也是資料檔案)的示意圖,可以看到葉節點包含了完整的資料記錄。這種索引叫做聚集索引。因為InnoDB的資料檔案本身要按主鍵聚集,所以InnoDB要求表必須有主鍵(MyISAM可以沒有),如果沒有顯式指定,則MySQL系統會自動選擇一個可以唯一標識資料記錄的列作為主鍵,如果不存在這種列,則MySQL自動為InnoDB表生成一個隱含欄位作為主鍵,這個欄位長度為6個位元組,型別為長整形。

第二個與MyISAM索引的不同是InnoDB的輔助索引data域儲存相應記錄主鍵的值而不是地址。換句話說,InnoDB的所有輔助索引都引用主鍵作為data域。例如,圖11為定義在Col3上的一個輔助索引:

Java高階程式設計——MySQL索引實現及優化原理解析

圖 4

這裡以英文字元的ASCII碼作為比較準則。聚集索引這種實現方式使得按主鍵的搜尋十分高效,但是輔助索引搜尋需要檢索兩遍索引:首先檢索輔助索引獲得主鍵,然後用主鍵到主索引中檢索獲得記錄。

瞭解不同儲存引擎的索引實現方式對於正確使用和優化索引都非常有幫助,例如知道了InnoDB的索引實現後,就很容易明白為什麼不建議使用過長的欄位作為主鍵,因為所有輔助索引都引用主索引,過長的主索引會令輔助索引變得過大。再例如,用非單調的欄位作為主鍵在InnoDB中不是個好主意,因為InnoDB資料檔案本身是一顆B+Tree,非單調的主鍵會造成在插入新記錄時資料檔案為了維持B+Tree的特性而頻繁的分裂調整,十分低效,而使用自增欄位作為主鍵則是一個很好的選擇。

下一章將具體討論這些與索引有關的優化策略。

索引使用策略及優化

MySQL的優化主要分為結構優化(Scheme optimization)和查詢優化(Query optimization)。本章討論的高效能索引策略主要屬於結構優化範疇。本章的內容完全基於上文的理論基礎,實際上一旦理解了索引背後的機制,那麼選擇高效能的策略就變成了純粹的推理,並且可以理解這些策略背後的邏輯。

示例資料庫

為了討論索引策略,需要一個資料量不算小的資料庫作為示例。本文選用MySQL官方文件中提供的示例資料庫之一:employees。這個資料庫關係複雜度適中,且資料量較大。下圖是這個資料庫的E-R關係圖(引用自MySQL官方手冊):

Java高階程式設計——MySQL索引實現及優化原理解析

圖 5

MySQL官方文件中關於此資料庫的頁面為http://dev.mysql.com/doc/employee/en/employee.html。裡面詳細介紹了此資料庫,並提供了下載地址和匯入方法,如果有興趣匯入此資料庫到自己的MySQL可以參考文中內容。

最左字首原理與相關優化

高效使用索引的首要條件是知道什麼樣的查詢會使用到索引,這個問題和B+Tree中的“最左字首原理”有關,下面通過例子說明最左字首原理。

這裡先說一下聯合索引的概念。在上文中,我們都是假設索引只引用了單個的列,實際上,MySQL中的索引可以以一定順序引用多個列,這種索引叫做聯合索引,一般的,一個聯合索引是一個有序元組<a1, a2, …, an>,其中各個元素均為資料表的一列,實際上要嚴格定義索引需要用到關係代數,但是這裡我不想討論太多關係代數的話題,因為那樣會顯得很枯燥,所以這裡就不再做嚴格定義。另外,單列索引可以看成聯合索引元素數為1的特例。

以employees.titles表為例,下面先檢視其上都有哪些索引:

Java高階程式設計——MySQL索引實現及優化原理解析

從結果中可以到titles表的主索引為<emp_no, title, from_date>,還有一個輔助索引<emp_no>。為了避免多個索引使事情變複雜(MySQL的SQL優化器在多索引時行為比較複雜),這裡我們將輔助索引drop掉:

ALTER TABLE employees.titles DROP INDEX emp_no;

這樣就可以專心分析索引PRIMARY的行為了。

情況一:全列匹配

Java高階程式設計——MySQL索引實現及優化原理解析

很明顯,當按照索引中所有列進行精確匹配(這裡精確匹配指“=”或“IN”匹配)時,索引可以被用到。這裡有一點需要注意,理論上索引對順序是敏感的,但是由於MySQL的查詢優化器會自動調整where子句的條件順序以使用適合的索引,例如我們將where中的條件順序顛倒:

Java高階程式設計——MySQL索引實現及優化原理解析

效果是一樣的。

情況二:最左字首匹配

Java高階程式設計——MySQL索引實現及優化原理解析

當查詢條件精確匹配索引的左邊連續一個或幾個列時,如<emp_no>或<emp_no, title>,所以可以被用到,但是隻能用到一部分,即條件所組成的最左字首。上面的查詢從分析結果看用到了PRIMARY索引,但是key_len為4,說明只用到了索引的第一列字首。

情況三:查詢條件用到了索引中列的精確匹配,但是中間某個條件未提供

Java高階程式設計——MySQL索引實現及優化原理解析

此時索引使用情況和情況二相同,因為title未提供,所以查詢只用到了索引的第一列,而後面的from_date雖然也在索引中,但是由於title不存在而無法和左字首連線,因此需要對結果進行掃描過濾from_date(這裡由於emp_no唯一,所以不存在掃描)。如果想讓from_date也使用索引而不是where過濾,可以增加一個輔助索引<emp_no, from_date>,此時上面的查詢會使用這個索引。除此之外,還可以使用一種稱之為“隔離列”的優化方法,將emp_no與from_date之間的“坑”填上。

首先我們看下title一共有幾種不同的值:

Java高階程式設計——MySQL索引實現及優化原理解析

只有7種。在這種成為“坑”的列值比較少的情況下,可以考慮用“IN”來填補這個“坑”從而形成最左字首:

Java高階程式設計——MySQL索引實現及優化原理解析

這次key_len為59,說明索引被用全了,但是從type和rows看出IN實際上執行了一個range查詢,這裡檢查了7個key。看下兩種查詢的效能比較:

Java高階程式設計——MySQL索引實現及優化原理解析

“填坑”後效能提升了一點。如果經過emp_no篩選後餘下很多資料,則後者效能優勢會更加明顯。當然,如果title的值很多,用填坑就不合適了,必須建立輔助索引。

情況四:查詢條件沒有指定索引第一列

Java高階程式設計——MySQL索引實現及優化原理解析

由於不是最左字首,索引這樣的查詢顯然用不到索引。

情況五:匹配某列的字首字串

Java高階程式設計——MySQL索引實現及優化原理解析

此時可以用到索引,但是如果萬用字元不是隻出現在末尾,則無法使用索引。(原文表述有誤,如果萬用字元%不出現在開頭,則可以用到索引,但根據具體情況不同可能只會用其中一個字首)

情況六:範圍查詢

Java高階程式設計——MySQL索引實現及優化原理解析

範圍列可以用到索引(必須是最左字首),但是範圍列後面的列無法用到索引。同時,索引最多用於一個範圍列,因此如果查詢條件中有兩個範圍列則無法全用到索引。

Java高階程式設計——MySQL索引實現及優化原理解析

可以看到索引對第二個範圍索引無能為力。這裡特別要說明MySQL一個有意思的地方,那就是僅用explain可能無法區分範圍索引和多值匹配,因為在type中這兩者都顯示為range。同時,用了“between”並不意味著就是範圍查詢,例如下面的查詢:

看起來是用了兩個範圍查詢,但作用於emp_no上的“BETWEEN”實際上相當於“IN”,也就是說emp_no實際是多值精確匹配。可以看到這個查詢用到了索引全部三個列。因此在MySQL中要謹慎地區分多值匹配和範圍匹配,否則會對MySQL的行為產生困惑。

情況七:查詢條件中含有函式或表示式。

很不幸,如果查詢條件中含有函式或表示式,則MySQL不會為這列使用索引(雖然某些在數學意義上可以使用)。例如:

Java高階程式設計——MySQL索引實現及優化原理解析

雖然這個查詢和情況五中功能相同,但是由於使用了函式left,則無法為title列應用索引,而情況五中用LIKE則可以。再如:

Java高階程式設計——MySQL索引實現及優化原理解析

顯然這個查詢等價於查詢emp_no為10001的函式,但是由於查詢條件是一個表示式,MySQL無法為其使用索引。看來MySQL還沒有智慧到自動優化常量表示式的程度,因此在寫查詢語句時儘量避免表示式出現在查詢中,而是先手工私下代數運算,轉換為無表示式的查詢語句。

索引選擇性與字首索引

既然索引可以加快查詢速度,那麼是不是隻要是查詢語句需要,就建上索引?答案是否定的。因為索引雖然加快了查詢速度,但索引也是有代價的:索引檔案本身要消耗儲存空間,同時索引會加重插入、刪除和修改記錄時的負擔,另外,MySQL在執行時也要消耗資源維護索引,因此索引並不是越多越好。一般兩種情況下不建議建索引。

第一種情況是表記錄比較少,例如一兩千條甚至只有幾百條記錄的表,沒必要建索引,讓查詢做全表掃描就好了。至於多少條記錄才算多,這個個人有個人的看法,我個人的經驗是以2000作為分界線,記錄數不超過 2000可以考慮不建索引,超過2000條可以酌情考慮索引。

另一種不建議建索引的情況是索引的選擇性較低。所謂索引的選擇性(Selectivity),是指不重複的索引值(也叫基數,Cardinality)與表記錄數(#T)的比值:

Index Selectivity = Cardinality / #T

顯然選擇性的取值範圍為(0, 1],選擇性越高的索引價值越大,這是由B+Tree的性質決定的。例如,上文用到的employees.titles表,如果title欄位經常被單獨查詢,是否需要建索引,我們看一下它的選擇性:

Java高階程式設計——MySQL索引實現及優化原理解析

title的選擇性不足0.0001(精確值為0.00001579),所以實在沒有什麼必要為其單獨建索引。

有一種與索引選擇性有關的索引優化策略叫做字首索引,就是用列的字首代替整個列作為索引key,當字首長度合適時,可以做到既使得字首索引的選擇性接近全列索引,同時因為索引key變短而減少了索引檔案的大小和維護開銷。下面以employees.employees表為例介紹字首索引的選擇和使用。

從圖8可以看到employees表只有一個索引<emp_no>,那麼如果我們想按名字搜尋一個人,就只能全表掃描了:

Java高階程式設計——MySQL索引實現及優化原理解析

圖 8

如果頻繁按名字搜尋員工,這樣顯然效率很低,因此我們可以考慮建索引。有兩種選擇,建<first_name>或<first_name, last_name>,看下兩個索引的選擇性:

Java高階程式設計——MySQL索引實現及優化原理解析

<first_name>顯然選擇性太低,<first_name, last_name>選擇性很好,但是first_name和last_name加起來長度為30,有沒有兼顧長度和選擇性的辦法?可以考慮用first_name和last_name的前幾個字元建立索引,例如<first_name, left(last_name, 3)>,看看其選擇性:

Java高階程式設計——MySQL索引實現及優化原理解析

選擇性還不錯,但離0.9313還是有點距離,那麼把last_name字首加到4:

Java高階程式設計——MySQL索引實現及優化原理解析

這時選擇性已經很理想了,而這個索引的長度只有18,比<first_name, last_name>短了接近一半,我們把這個字首索引 建上:

ALTER TABLE employees.employees

ADD INDEX `first_name_last_name4` (first_name, last_name(4));

此時再執行一遍按名字查詢,比較分析一下與建索引前的結果:

Java高階程式設計——MySQL索引實現及優化原理解析

效能的提升是顯著的,查詢速度提高了120多倍。

字首索引兼顧索引大小和查詢速度,但是其缺點是不能用於ORDER BY和GROUP BY操作,也不能用於Covering index(即當索引本身包含查詢所需全部資料時,不再訪問資料檔案本身)。

InnoDB的主鍵選擇與插入優化

在使用InnoDB儲存引擎時,如果沒有特別的需要,請永遠使用一個與業務無關的自增欄位作為主鍵。

經常看到有帖子或部落格討論主鍵選擇問題,有人建議使用業務無關的自增主鍵,有人覺得沒有必要,完全可以使用如學號或身份證號這種唯一欄位作為主鍵。不論支援哪種論點,大多數論據都是業務層面的。如果從資料庫索引優化角度看,使用InnoDB引擎而不使用自增主鍵絕對是一個糟糕的主意。

上文討論過InnoDB的索引實現,InnoDB使用聚集索引,資料記錄本身被存於主索引(一顆B+Tree)的葉子節點上。這就要求同一個葉子節點內(大小為一個記憶體頁或磁碟頁)的各條資料記錄按主鍵順序存放,因此每當有一條新的記錄插入時,MySQL會根據其主鍵將其插入適當的節點和位置,如果頁面達到裝載因子(InnoDB預設為15/16),則開闢一個新的頁(節點)。

如果表使用自增主鍵,那麼每次插入新的記錄,記錄就會順序新增到當前索引節點的後續位置,當一頁寫滿,就會自動開闢一個新的頁。如下圖所示:

Java高階程式設計——MySQL索引實現及優化原理解析

這樣就會形成一個緊湊的索引結構,近似順序填滿。由於每次插入時也不需要移動已有資料,因此效率很高,也不會增加很多開銷在維護索引上。

如果使用非自增主鍵(如果身份證號或學號等),由於每次插入主鍵的值近似於隨機,因此每次新紀錄都要被插到現有索引頁得中間某個位置:

Java高階程式設計——MySQL索引實現及優化原理解析

此時MySQL不得不為了將新記錄插到合適位置而移動資料,甚至目標頁面可能已經被回寫到磁碟上而從快取中清掉,此時又要從磁碟上讀回來,這增加了很多開銷,同時頻繁的移動、分頁操作造成了大量的碎片,得到了不夠緊湊的索引結構,後續不得不通過OPTIMIZE TABLE來重建表並優化填充頁面。

因此,只要可以,請儘量在InnoDB上採用自增欄位做主鍵。

後記

這篇文章斷斷續續寫了半個月,主要內容就是上面這些了。不可否認,這篇文章在一定程度上有紙上談兵之嫌,因為我本人對MySQL的使用屬於菜鳥級別,更沒有太多資料庫調優的經驗,在這裡大談資料庫索引調優有點大言不慚。就當是我個人的一篇學習筆記了。

其實資料庫索引調優是一項技術活,不能僅僅靠理論,因為實際情況千變萬化,而且MySQL本身存在很複雜的機制,如查詢優化策略和各種引擎的實現差異等都會使情況變得更加複雜。但同時這些理論是索引調優的基礎,只有在明白理論的基礎上,才能對調優策略進行合理推斷並瞭解其背後的機制,然後結合實踐中不斷的實驗和摸索,從而真正達到高效使用MySQL索引的目的。

另外,MySQL索引及其優化涵蓋範圍非常廣,本文只是涉及到其中一部分。如與排序(ORDER BY)相關的索引優化及覆蓋索引(Covering index)的話題本文並未涉及,同時除B-Tree索引外MySQL還根據不同引擎支援的雜湊索引、全文索引等等本文也並未涉及。如果有Java高階程式設計——MySQL索引實現及優化原理解析機會,希望再對本文未涉及的部分進行補充吧。


相關文章