OCR of Hand-written Data using kNN
OCR of Hand-written Digits
我們的目標是構建一個可以讀取手寫數字的應用程式, 為此,我們需要一些train_data和test_data. OpenCV附帶一個images digits.png(在資料夾opencvsourcessamplesdata中),它有5000個手寫數字(每個數字500個,每個數字是20×20影像).所以首先要將圖片切割成5000個不同圖片,每個數字變成一個單行400畫素.前面的250個數字作為訓練資料,後250個作為測試資料.
import numpy as np
import cv2
import matplotlib.pyplot as plt
img = cv2.imread(`digits.png`)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Now we split the image to 5000 cells, each 20x20 size
cells = [np.hsplit(row,100) for row in np.vsplit(gray,50)]
# Make it into a Numpy array. It size will be (50,100,20,20)
x = np.array(cells)
# Now we prepare train_data and test_data.
train = x[:,:50].reshape(-1,400).astype(np.float32) # Size = (2500,400)
test = x[:,50:100].reshape(-1,400).astype(np.float32) # Size = (2500,400)
# Create labels for train and test data
k = np.arange(10)
train_labels = np.repeat(k,250)[:,np.newaxis]
test_labels = train_labels.copy()
# Initiate kNN, train the data, then test it with test data for k=1
knn = cv2.ml.KNearest_create()
knn.train(train, cv2.ml.ROW_SAMPLE, train_labels)
ret,result,neighbours,dist = knn.findNearest(test,k=5)
# Now we check the accuracy of classification
# For that, compare the result with test_labels and check which are wrong
matches = result==test_labels
correct = np.count_nonzero(matches)
accuracy = correct*100.0/result.size
print( accuracy )
輸出:91.76
進一步提高準確率的方法是增加訓練資料,特別是錯誤的資料.每次訓練時最好是儲存訓練資料,以便下次使用.
# save the data
np.savez(`knn_data.npz`,train=train, train_labels=train_labels)
# Now load the data
with np.load(`knn_data.npz`) as data:
print( data.files )
train = data[`train`]
train_labels = data[`train_labels`]
OCR of English Alphabets
在opencv / samples / data /資料夾中附帶一個資料檔案letter-recognition.data.在每一行中,第一列是一個字母表,它是我們的標籤. 接下來的16個數字是它的不同特徵.
import numpy as np
import cv2
import matplotlib.pyplot as plt
# Load the data, converters convert the letter to a number
data= np.loadtxt(`letter-recognition.data`, dtype= `float32`, delimiter = `,`,
converters= {0: lambda ch: ord(ch)-ord(`A`)})
# split the data to two, 10000 each for train and test
train, test = np.vsplit(data,2)
# split trainData and testData to features and responses
responses, trainData = np.hsplit(train,[1])
labels, testData = np.hsplit(test,[1])
# Initiate the kNN, classify, measure accuracy.
knn = cv2.ml.KNearest_create()
knn.train(trainData, cv2.ml.ROW_SAMPLE, responses)
ret, result, neighbours, dist = knn.findNearest(testData, k=5)
correct = np.count_nonzero(result == labels)
accuracy = correct*100.0/10000
print( accuracy )
輸出:93.06