python中svm方法實現
資料如下:
3.542485 ,1.977398 ,-1
3.018896 ,2.556416 , -1
7.551510 , -1.580030 , 1
2.114999 ,-0.004466 , -1
8.127113 ,1.274372 , 1
7.108772 ,-0.986906 , 1
8.610639 ,2.046708 , 1
2.326297 ,0.265213 , -1
3.634009 ,1.730537 , -1
0.341367 ,-0.894998 , -1
3.125951 ,0.293251 , -1
2.123252 ,-0.783563 , -1
0.887835 ,-2.797792 , -1
7.139979 ,-2.329896 , 1
1.696414 ,-1.212496 , -1
8.117032 ,0.623493 , 1
8.497162 ,-0.266649 , 1
4.658191 ,3.507396 ,-1
8.197181 ,1.545132 ,1
1.208047 ,0.213100 ,-1
1.928486 ,-0.321870 ,-1
2.175808 ,-0.014527 ,-1
7.886608 ,0.461755 ,1
3.223038 ,-0.552392 ,-1
3.628502 ,2.190585 ,-1
7.407860 ,-0.121961 ,1
7.286357 ,0.251077 ,1
2.301095 ,-0.533988 ,-1
-0.232542 ,-0.547690 ,-1
3.457096 ,-0.082216 ,-1
3.023938 ,-0.057392 ,-1
8.015003 ,0.885325 ,1
8.991748 ,0.923154 ,1
7.916831 ,-1.781735 ,1
7.616862 ,-0.217958 ,1
2.450939 ,0.744967 ,-1
7.270337 ,-2.507834 ,1
1.749721 ,-0.961902 ,-1
1.803111 ,-0.176349 ,-1
8.804461 ,3.044301 ,1
1.231257 ,-0.568573 ,-1
2.074915 ,1.410550 ,-1
-0.743036 ,-1.736103 ,-1
3.536555 ,3.964960 ,-1
8.410143 ,0.025606 ,1
7.382988 ,-0.478764 ,1
6.960661 ,-0.245353 ,1
8.234460 ,0.701868 ,1
8.168618 ,-0.903835 ,1
1.534187 ,-0.622492 ,-1
9.229518 ,2.066088 ,1
7.886242 ,0.191813 ,1
2.893743 ,-1.643468 ,-1
1.870457 ,-1.040420 ,-1
5.286862 ,-2.358286 ,1
6.080573 ,0.418886 ,1
2.544314 ,1.714165 ,-1
6.016004 ,-3.753712 ,1
0.926310 ,-0.564359 ,-1
0.870296 ,-0.109952 ,-1
2.369345 ,1.375695 ,-1
1.363782 ,-0.254082 ,-1
7.279460 ,-0.189572 ,1
1.896005 ,0.515080 ,-1
8.102154 ,-0.603875 ,1
2.529893 ,0.662657 ,-1
1.963874 ,-0.365233 ,-1
8.132048 ,0.785914 ,1
8.245938 ,0.372366 ,1
6.543888 ,0.433164 ,1
-0.236713 ,-5.766721 ,-1
8.112593 ,0.295839 ,1
9.803425 ,1.495167 ,1
1.497407 ,-0.552916 ,-1
1.336267 ,-1.632889 ,-1
9.205805 ,-0.586480 ,1
1.966279 ,-1.840439 ,-1
8.398012 ,1.584918 ,1
7.239953 ,-1.764292 ,1
7.556201 ,0.241185 ,1
9.015509 ,0.345019 ,1
8.266085 ,-0.230977 ,1
8.545620 ,2.788799 ,1
9.295969 ,1.346332 ,1
2.404234 ,0.570278 ,-1
2.037772 ,0.021919 ,-1
1.727631 ,-0.453143 ,-1
1.979395 ,-0.050773 ,-1
8.092288 ,-1.372433 ,1
1.667645 ,0.239204 ,-1
9.854303 ,1.365116 ,1
7.921057 ,-1.327587 ,1
8.500757 ,1.492372 ,1
1.339746 ,-0.291183 ,-1
3.107511 ,0.758367 ,-1
2.609525 ,0.902979 ,-1
3.263585 ,1.367898 ,-1
2.912122 ,-0.202359 ,-1
1.731786 ,0.589096 ,-1
2.387003 ,1.573131 ,-1
python程式碼如下:
from numpy import *
import matplotlib.pyplot as plt
import operator
import time
def loadDataSet(fileName):
dataMat = []
labelMat = []
with open(fileName) as fr:
for line in fr:
lineArr = line.split(',')
print(line)
dataMat.append([float(lineArr[0]), float(lineArr[1])])
labelMat.append(float(lineArr[2]))
return dataMat, labelMat
def selectJrand(i, m):
j = i
while (j == i):
j = int(random.uniform(0, m))
return j
def clipAlpha(aj, H, L):
if aj > H:
aj = H
if L > aj:
aj = L
return aj
class optStruct:
def __init__(self, dataMatIn, classLabels, C, toler):
self.X = dataMatIn
self.labelMat = classLabels
self.C = C
self.tol = toler
self.m = shape(dataMatIn)[0]
self.alphas = mat(zeros((self.m, 1)))
self.b = 0
self.eCache = mat(zeros((self.m, 2)))
def calcEk(oS, k):
fXk = float(multiply(oS.alphas, oS.labelMat).T * (oS.X * oS.X[k, :].T)) + oS.b
Ek = fXk - float(oS.labelMat[k])
return Ek
def selectJ(i, oS, Ei):
maxK = -1
maxDeltaE = 0
Ej = 0
oS.eCache[i] = [1, Ei]
validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
if (len(validEcacheList)) > 1:
for k in validEcacheList:
if k == i:
continue
Ek = calcEk(oS, k)
deltaE = abs(Ei - Ek)
if (deltaE > maxDeltaE):
maxK = k
maxDeltaE = deltaE
Ej = Ek
return maxK, Ej
else:
j = selectJrand(i, oS.m)
Ej = calcEk(oS, j)
return j, Ej
def updateEk(oS, k):
Ek = calcEk(oS, k)
oS.eCache[k] = [1, Ek]
def innerL(i, oS):
Ei = calcEk(oS, i)
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
j, Ej = selectJ(i, oS, Ei)
alphaIold = oS.alphas[i].copy()
alphaJold = oS.alphas[j].copy()
if (oS.labelMat[i] != oS.labelMat[j]):
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if (L == H):
# print("L == H")
return 0
eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :] * oS.X[i, :].T - oS.X[j, :] * oS.X[j, :].T
if eta >= 0:
# print("eta >= 0")
return 0
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
updateEk(oS, j)
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
# print("j not moving enough")
return 0
oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j])
updateEk(oS, i)
b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[i, :].T - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[i, :] * oS.X[j, :].T
b2 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.X[i, :] * oS.X[j, :].T - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.X[j, :] * oS.X[j, :].T
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
oS.b = b1
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
oS.b = b2
else:
oS.b = (b1 + b2) / 2.0
return 1
else:
return 0
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):
"""
輸入:資料集, 類別標籤, 常數C, 容錯率, 最大迴圈次數
輸出:目標b, 引數alphas
"""
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler)
iterr = 0
entireSet = True
alphaPairsChanged = 0
while (iterr < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
alphaPairsChanged = 0
if entireSet:
for i in range(oS.m):
alphaPairsChanged += innerL(i, oS)
# print("fullSet, iter: %d i:%d, pairs changed %d" % (iterr, i, alphaPairsChanged))
iterr += 1
else:
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
for i in nonBoundIs:
alphaPairsChanged += innerL(i, oS)
# print("non-bound, iter: %d i:%d, pairs changed %d" % (iterr, i, alphaPairsChanged))
iterr += 1
if entireSet:
entireSet = False
elif (alphaPairsChanged == 0):
entireSet = True
# print("iteration number: %d" % iterr)
return oS.b, oS.alphas
def calcWs(alphas, dataArr, classLabels):
"""
輸入:alphas, 資料集, 類別標籤
輸出:目標w
"""
X = mat(dataArr)
labelMat = mat(classLabels).transpose()
m, n = shape(X)
w = zeros((n, 1))
for i in range(m):
w += multiply(alphas[i] * labelMat[i], X[i, :].T)
return w
def plotFeature(dataMat, labelMat, weights, b):
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i, 0])
ycord1.append(dataArr[i, 1])
else:
xcord2.append(dataArr[i, 0])
ycord2.append(dataArr[i, 1])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(2, 7.0, 0.1)
y = (-b[0, 0] * x) - 10 / linalg.norm(weights)
ax.plot(x, y)
plt.xlabel('X1'); plt.ylabel('X2')
plt.show()
def main():
trainDataSet, trainLabel = loadDataSet('testSet.txt')
b, alphas = smoP(trainDataSet, trainLabel, 0.6, 0.0001, 40)
ws = calcWs(alphas, trainDataSet, trainLabel)
print("ws = \n", ws)
print("b = \n", b)
plotFeature(trainDataSet, trainLabel, ws, b)
if __name__ == '__main__':
start = time.clock()
main()
end = time.clock()
print('finish all in %s' % str(end - start))
實驗結果:
ws =
[[ 0.65307162]
[-0.17196128]]
b =
[[-2.89901748]]
圖片
相關文章
- 支援向量機(SVM)和python實現(二)Python
- python中的scikit-learn庫來實現SVM分類器。Python
- 用Python實現一個SVM分類器策略Python
- Scikit-learn SVM 實現
- 支援向量機(SVM)從原理到python程式碼實現Python
- 機器學習程式碼實現 SVM (5)機器學習
- Opencv中SVM樣本訓練、歸類流程及實現OpenCV
- Python機器學習筆記:SVM(1)——SVM概述Python機器學習筆記
- Svm演算法原理及實現演算法
- opencv中SVMOpenCV
- python中7種方法實現字串的拼接Python字串
- 學習SVM(一) SVM模型訓練與分類的OpenCV實現模型OpenCV
- Python機器學習筆記:SVM(3)——證明SVMPython機器學習筆記
- SVM實現多分類的三種方案
- 機器學習實戰-SVM模型實現人臉識別機器學習模型
- Python機器學習筆記:SVM(2)——SVM核函式Python機器學習筆記函式
- OpenCV筆記(3)實現支援向量機(SVM)OpenCV筆記
- Spark MLlib SVM 文字分類器實現Spark文字分類
- Python中4種方法實現列印整個Pandas DataFramePython
- Python中4種方法實現 xls 檔案轉 xlsxPython
- opencv中svm原始碼OpenCV原始碼
- 【Python機器學習實戰】感知機和支援向量機學習筆記(三)之SVM的實現Python機器學習筆記
- python 字串replace方法實現探索Python字串
- 學習SVM(四) 理解SVM中的支援向量(Support Vector)
- OpenCL中的SVM使用案例
- SVM多分類器的實現(Opencv3,C++)OpenCVC++
- python dict實現的魔法方法Python
- 【數值方法-Python實現】Crout分解+追趕法實現Python
- Python中迭代器的實現Python
- Python中實現單例模式Python單例模式
- Python機器學習筆記——One Class SVMPython機器學習筆記
- 在 iOS 中實現方法鏈呼叫iOS
- HTML中樹的實現方法 (轉)HTML
- 使用sklearn實現svm--用於機械故障分類
- Python 5種方法實現單例模式Python單例模式
- Python實現拼多多商品資訊抓取方法Python
- flask實現python方法轉換服務FlaskPython
- python中實現函式過載Python函式