1. numpy where function
>>>A = np.array ([1 ,2 ,3 ,4 ])
>>>B= np.array ([5 ,1 ,7 ,2 ])
>>>condition = np.array ([True ,False ,False ,False ])
>>>np.where (condition,A,B)
array ([1 , 1 , 7 , 2 ])
>>>np.where (condition,B,A)
array ([5 , 2 , 3 , 4 ])
>>>b = np.random.randn(5 ,5 )
array([[-0.2340034 , -1.03169723, -0.68866699, -0.95395849, -0.81065019],
[ 1.57470122, 0.48663041, 0.69880676, -0.05555963, -0.84871411],
[ 0.1612104 , -0.93401571, 0.04913108, -0.86189833, 1.61949843],
[-0.92598677, 0.94459784, 0.23021928, -0.74052632, 0.29827747],
[-0.34973875, -0.00318771, 0.48310484, -0.14342912, 1.04019596]] )
>>>np.where(b < 0 ,0 ,b) #change negative number to 0
array([[0. , 0. , 0. , 0. , 0. ],
[1.57470122, 0.48663041, 0.69880676, 0. , 0. ],
[0.1612104 , 0. , 0.04913108, 0. , 1.61949843],
[0. , 0.94459784, 0.23021928, 0. , 0.29827747],
[0. , 0. , 0.48310484, 0. , 1.04019596]] )
2. Some Statistical Processing
>>>c = np.array([[1,2,3],[4,5,6],[7,8,9]] )
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]] )
>>>c.sum()
45
>>>c.sum(axis=1 )
array([ 6 , 15 , 24 ])
>>>c.mean()
5.0
>>>c.std() #求標準差
2.5819888974716112
>>>c.var() #Returns the variance of the array elements, along given axis. 求方差
6.666666666666667
3. Array Sort
>>>d = np.random.randn(10 )
array ([-1.58417256 , 0.16156529 , 1.74941204 , -0.75928321 , 0.16414657 ,
0.16228104 , 1.08465636 , 0.15334062 , -1.90844477 , 0.57501987 ])
>>>d .sort ()
array ([-1.03442217 , -1.02168667 , 0.04353088 , 0.14622849 , 0.2740999 ,
0.2748698 , 0.48825946 , 0.6764689 , 1.13611964 , 1.18354015 ])
# in1d test values in one array
>>>e = np.array ([1 ,2 ,3 ,3 ,4 ,4 ,5 ])
>>>np.in1d([2 ,4 ,8 ],e)
array ([ True , True , False ], dtype=bool)
# 注意是數字1
# check if element in the first array appears in the second array
>>>np.unique(e) #Find the unique elements of an array .
array ([1 , 2 , 3 , 4 , 5 ])