netty4執行緒模型
ServerBootstrap http示例
// Configure the server. EventLoopGroup bossGroup = new EpollEventLoopGroup(1); EventLoopGroup workerGroup = new EpollEventLoopGroup(); try { ServerBootstrap b = new ServerBootstrap(); b.channel(EpollServerSocketChannel.class); b.option(ChannelOption.SO_BACKLOG, 1024); b.childOption(ChannelOption.ALLOCATOR, PooledByteBufAllocator.DEFAULT); b.group(bossGroup, workerGroup) // .handler(new LoggingHandler(LogLevel.INFO)) .childHandler(new HttpHelloWorldServerInitializer(sslCtx)); Channel ch = b.bind(PORT).sync().channel(); /* System.err.println("Open your web browser and navigate to " + (SSL? "https" : "http") + "://127.0.0.1:" + PORT + '/');*/ ch.closeFuture().sync(); } finally { bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); }
繫結過程:
private ChannelFuture doBind(final SocketAddress localAddress) { final ChannelFuture regFuture = initAndRegister(); final Channel channel = regFuture.channel(); if (regFuture.cause() != null) { return regFuture; } if (regFuture.isDone()) { // At this point we know that the registration was complete and successful. ChannelPromise promise = channel.newPromise(); doBind0(regFuture, channel, localAddress, promise); return promise; } else { // Registration future is almost always fulfilled already, but just in case it's not. final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel); regFuture.addListener(new ChannelFutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { Throwable cause = future.cause(); if (cause != null) { // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an // IllegalStateException once we try to access the EventLoop of the Channel. promise.setFailure(cause); } else { // Registration was successful, so set the correct executor to use. // See https://github.com/netty/netty/issues/2586 promise.executor = channel.eventLoop(); } doBind0(regFuture, channel, localAddress, promise); } }); return promise; } }
初始化過程:
final ChannelFuture initAndRegister() { final Channel channel = channelFactory().newChannel(); try { init(channel); } catch (Throwable t) { channel.unsafe().closeForcibly(); // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor return new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t); } ChannelFuture regFuture = group().register(channel); if (regFuture.cause() != null) { if (channel.isRegistered()) { channel.close(); } else { channel.unsafe().closeForcibly(); } } // If we are here and the promise is not failed, it's one of the following cases: // 1) If we attempted registration from the event loop, the registration has been completed at this point. // i.e. It's safe to attempt bind() or connect() now because the channel has been registered. // 2) If we attempted registration from the other thread, the registration request has been successfully // added to the event loop's task queue for later execution. // i.e. It's safe to attempt bind() or connect() now: // because bind() or connect() will be executed *after* the scheduled registration task is executed // because register(), bind(), and connect() are all bound to the same thread. return regFuture; }
ServerBootStrap的初始化過程:
@Override void init(Channel channel) throws Exception { final Map<ChannelOption<?>, Object> options = options(); synchronized (options) { channel.config().setOptions(options); } final Map<AttributeKey<?>, Object> attrs = attrs(); synchronized (attrs) { for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) { @SuppressWarnings("unchecked") AttributeKey<Object> key = (AttributeKey<Object>) e.getKey(); channel.attr(key).set(e.getValue()); } } ChannelPipeline p = channel.pipeline(); final EventLoopGroup currentChildGroup = childGroup; final ChannelHandler currentChildHandler = childHandler; final Entry<ChannelOption<?>, Object>[] currentChildOptions; final Entry<AttributeKey<?>, Object>[] currentChildAttrs; synchronized (childOptions) { currentChildOptions = childOptions.entrySet().toArray(newOptionArray(childOptions.size())); } synchronized (childAttrs) { currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(childAttrs.size())); } p.addLast(new ChannelInitializer<Channel>() { @Override public void initChannel(Channel ch) throws Exception { ChannelPipeline pipeline = ch.pipeline(); ChannelHandler handler = handler(); if (handler != null) { pipeline.addLast(handler); } pipeline.addLast(new ServerBootstrapAcceptor( currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs)); } }); }
接收器ServerBootstrapAcceptor
@Override @SuppressWarnings("unchecked") public void channelRead(ChannelHandlerContext ctx, Object msg) { final Channel child = (Channel) msg; child.pipeline().addLast(childHandler); for (Entry<ChannelOption<?>, Object> e: childOptions) { try { if (!child.config().setOption((ChannelOption<Object>) e.getKey(), e.getValue())) { logger.warn("Unknown channel option: " + e); } } catch (Throwable t) { logger.warn("Failed to set a channel option: " + child, t); } } for (Entry<AttributeKey<?>, Object> e: childAttrs) { child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue()); } try { childGroup.register(child).addListener(new ChannelFutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { if (!future.isSuccess()) { forceClose(child, future.cause()); } } }); } catch (Throwable t) { forceClose(child, t); } }
ThreadPerChannelEventLoopGroup實現註冊
@Override public ChannelFuture register(Channel channel) { if (channel == null) { throw new NullPointerException("channel"); } try { EventLoop l = nextChild(); return l.register(channel, new DefaultChannelPromise(channel, l)); } catch (Throwable t) { return new FailedChannelFuture(channel, GlobalEventExecutor.INSTANCE, t); } }
獲取子eventLoop
private EventLoop nextChild() throws Exception { if (shuttingDown) { throw new RejectedExecutionException("shutting down"); } EventLoop loop = idleChildren.poll(); if (loop == null) { if (maxChannels > 0 && activeChildren.size() >= maxChannels) { throw tooManyChannels; } loop = newChild(childArgs); loop.terminationFuture().addListener(childTerminationListener); } activeChildren.add(loop); return loop; }
產生新子eventLoop(SingleThreadEventExecutor.java)
/** * Create a new instance * * @param parent the {@link EventExecutorGroup} which is the parent of this instance and belongs to it * @param executor the {@link Executor} which will be used for executing * @param addTaskWakesUp {@code true} if and only if invocation of {@link #addTask(Runnable)} will wake up the * executor thread */ protected SingleThreadEventExecutor(EventExecutorGroup parent, Executor executor, boolean addTaskWakesUp) { super(parent); if (executor == null) { throw new NullPointerException("executor"); } this.addTaskWakesUp = addTaskWakesUp; this.executor = executor; taskQueue = newTaskQueue(); }
其執行方法(SingleThreadEventExecutor.java):
@Override public void execute(Runnable task) { if (task == null) { throw new NullPointerException("task"); } boolean inEventLoop = inEventLoop(); if (inEventLoop) { addTask(task); } else { startThread(); addTask(task); if (isShutdown() && removeTask(task)) { reject(); } } if (!addTaskWakesUp && wakesUpForTask(task)) { wakeup(inEventLoop); } }
啟動處理執行緒(SingleThreadEventExecutor.java):
private void startThread() { if (STATE_UPDATER.get(this) == ST_NOT_STARTED) { if (STATE_UPDATER.compareAndSet(this, ST_NOT_STARTED, ST_STARTED)) { doStartThread(); } } } private void doStartThread() { assert thread == null; executor.execute(new Runnable() { @Override public void run() { thread = Thread.currentThread(); if (interrupted) { thread.interrupt(); } boolean success = false; updateLastExecutionTime(); try { SingleThreadEventExecutor.this.run(); success = true; } catch (Throwable t) { logger.warn("Unexpected exception from an event executor: ", t); } finally { for (;;) { int oldState = STATE_UPDATER.get(SingleThreadEventExecutor.this); if (oldState >= ST_SHUTTING_DOWN || STATE_UPDATER.compareAndSet( SingleThreadEventExecutor.this, oldState, ST_SHUTTING_DOWN)) { break; } } // Check if confirmShutdown() was called at the end of the loop. if (success && gracefulShutdownStartTime == 0) { logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " + SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called " + "before run() implementation terminates."); } try { // Run all remaining tasks and shutdown hooks. for (;;) { if (confirmShutdown()) { break; } } } finally { try { cleanup(); } finally { STATE_UPDATER.set(SingleThreadEventExecutor.this, ST_TERMINATED); threadLock.release(); if (!taskQueue.isEmpty()) { logger.warn( "An event executor terminated with " + "non-empty task queue (" + taskQueue.size() + ')'); } terminationFuture.setSuccess(null); } } } } }); }
其中的run方法由其子類(DefaultEventLoop,EpollEventLoop,NioEventLoop,ThreadPerChannelEventLoop)各種實現,以NioEventLoop為例:
@Override protected void run() { for (;;) { boolean oldWakenUp = wakenUp.getAndSet(false); try { if (hasTasks()) { selectNow(); } else { select(oldWakenUp); // 'wakenUp.compareAndSet(false, true)' is always evaluated // before calling 'selector.wakeup()' to reduce the wake-up // overhead. (Selector.wakeup() is an expensive operation.) // // However, there is a race condition in this approach. // The race condition is triggered when 'wakenUp' is set to // true too early. // // 'wakenUp' is set to true too early if: // 1) Selector is waken up between 'wakenUp.set(false)' and // 'selector.select(...)'. (BAD) // 2) Selector is waken up between 'selector.select(...)' and // 'if (wakenUp.get()) { ... }'. (OK) // // In the first case, 'wakenUp' is set to true and the // following 'selector.select(...)' will wake up immediately. // Until 'wakenUp' is set to false again in the next round, // 'wakenUp.compareAndSet(false, true)' will fail, and therefore // any attempt to wake up the Selector will fail, too, causing // the following 'selector.select(...)' call to block // unnecessarily. // // To fix this problem, we wake up the selector again if wakenUp // is true immediately after selector.select(...). // It is inefficient in that it wakes up the selector for both // the first case (BAD - wake-up required) and the second case // (OK - no wake-up required). if (wakenUp.get()) { selector.wakeup(); } } cancelledKeys = 0; needsToSelectAgain = false; final int ioRatio = this.ioRatio; if (ioRatio == 100) { processSelectedKeys(); runAllTasks(); } else { final long ioStartTime = System.nanoTime(); processSelectedKeys(); final long ioTime = System.nanoTime() - ioStartTime; runAllTasks(ioTime * (100 - ioRatio) / ioRatio); } if (isShuttingDown()) { closeAll(); if (confirmShutdown()) { break; } } } catch (Throwable t) { logger.warn("Unexpected exception in the selector loop.", t); // Prevent possible consecutive immediate failures that lead to // excessive CPU consumption. try { Thread.sleep(1000); } catch (InterruptedException e) { // Ignore. } } } }
執行所有任務(SingleThreadEventExecutor.java)
/** * Poll all tasks from the task queue and run them via {@link Runnable#run()} method. This method stops running * the tasks in the task queue and returns if it ran longer than {@code timeoutNanos}. */ protected boolean runAllTasks(long timeoutNanos) { fetchFromScheduledTaskQueue(); Runnable task = pollTask(); if (task == null) { return false; } final long deadline = ScheduledFutureTask.nanoTime() + timeoutNanos; long runTasks = 0; long lastExecutionTime; for (;;) { try { task.run(); } catch (Throwable t) { logger.warn("A task raised an exception.", t); } runTasks ++; // Check timeout every 64 tasks because nanoTime() is relatively expensive. // XXX: Hard-coded value - will make it configurable if it is really a problem. if ((runTasks & 0x3F) == 0) { lastExecutionTime = ScheduledFutureTask.nanoTime(); if (lastExecutionTime >= deadline) { break; } } task = pollTask(); if (task == null) { lastExecutionTime = ScheduledFutureTask.nanoTime(); break; } } this.lastExecutionTime = lastExecutionTime; return true; }
小結
本文從一個簡單的示例程式,一步步分析netty4的執行緒模型,從ServerBootstrapAcceptor到SingleThreadEventExecutor的原始碼,環環相扣,可以根據上面的分析鏈理解
一個請求過來後,netty的處理流程。