Python文字預處理:步驟、使用工具及示例

AI科技大本營發表於2019-01-25

640?wx_fmt=jpeg


作者 | Data Monster

譯者 | Linstancy

編輯 | 一一

出品 | AI科技大本營(ID:rgznai100)


本文將討論文字預處理的基本步驟,旨在將文字資訊從人類語言轉換為機器可讀格式以便用於後續處理。此外,本文還將進一步討論文字預處理過程所需要的工具。


當拿到一個文字後,首先從文字正則化(text normalization) 處理開始。常見的文字正則化步驟包括:


  • 將文字中出現的所有字母轉換為小寫或大寫

  • 將文字中的數字轉換為單詞或刪除這些數字

  • 刪除文字中出現的標點符號、重音符號以及其他變音符號

  • 刪除文字中的空白區域

  • 擴充套件文字中出現的縮寫

  • 刪除文字中出現的終止詞、稀疏詞和特定詞

  • 文字規範化(text canonicalization)


下面將詳細描述上述文字正則化步驟。


將文字中出現的字母轉化為小寫


示例1:將字母轉化為小寫


Python 實現程式碼:

input_str = ”The 5 biggest countries by population in 2017 are China, India, United States, Indonesia, and Brazil.”
input_str = input_str.lower()
print(input_str)

輸出:

the 5 biggest countries by population in 2017 are china, india, united states, indonesia, and brazil.


刪除文字中出現的數字


如果文字中的數字與文字分析無關的話,那就刪除這些數字。通常,正則化表示式可以幫助你實現這一過程。


示例2:刪除數字


Python 實現程式碼:     


import re
input_str = ’Box A contains 3 red and 5 white balls, while Box B contains 4 red and 2 blue balls.’
result = re.sub(r’\d+’, ‘’, input_str)
print(result)


輸出:


Box A contains red and white balls, while Box B contains red and blue balls.


刪除文字中出現的標點


以下示例程式碼演示如何刪除文字中的標點符號,如 [!”#$%&’()*+,-./:;<=>?@[\]^_`{|}~] 等符號


示例3:刪除標點


Python 實現程式碼:


import string
input_str = “This &is [an] example? {of} string. with.? punctuation!!!!” # Sample string
result = input_str.translate(string.maketrans(“”,””), string.punctuation)
print(result)


輸出:


This is an example of string with punctuation


刪除文字中出現的空格


可以通過 strip()函式移除文字前後出現的空格。


示例4:刪除空格


Python 實現程式碼:


input_str = “ \t a string example\t “
input_str = input_str.strip()
input_str


輸出:


‘a string example’


符號化(Tokenization


符號化是將給定的文字拆分成每個帶標記的小模組的過程,其中單詞、數字、標點及其他符號等都可視為是一種標記。在下表中(Tokenization sheet),羅列出用於實現符號化過程的一些常用工具。


640?wx_fmt=png


刪除文字中出現的終止詞


終止詞(Stop words) 指的是“a”,“a”,“on”,“is”,“all”等語言中最常見的詞。這些詞語沒什麼特別或重要意義,通常可以從文字中刪除。一般使用 Natural Language Toolkit(NLTK) 來刪除這些終止詞,這是一套專門用於符號和自然語言處理統計的開源庫。


示例7:刪除終止詞


實現程式碼:


input_str = “NLTK is a leading platform for building Python programs to work with human language data.”
stop_words = set(stopwords.words(‘english’))
from nltk.tokenize import word_tokenize
tokens = word_tokenize(input_str)
result = [i for i in tokens if not i in stop_words]
print (result)


輸出:


[‘NLTK’, ‘leading’, ‘platform’, ‘building’, ‘Python’, ‘programs’, ‘work’, ‘human’, ‘language’, ‘data’, ‘.’]


此外,scikit-learn 也提供了一個用於處理終止詞的工具: 

    

from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS


同樣,spaCy 也有一個類似的處理工具:


from spacy.lang.en.stop_words import STOP_WORDS


刪除文字中出現的稀疏詞和特定詞


在某些情況下,有必要刪除文字中出現的一些稀疏術語或特定詞。考慮到任何單詞都可以被認為是一組終止詞,因此可以通過終止詞刪除工具來實現這一目標。


詞幹提取(Stemming)


詞幹提取是一個將詞語簡化為詞幹、詞根或詞形的過程如 books-booklooked-look)。當前主流的兩種演算法是 Porter stemming 演算法刪除單詞中刪除常見的形態和拐點結尾)  Lancaster stemming 演算法。


640?wx_fmt=png


示例 8:使用 NLYK 實現詞幹提取


實現程式碼:


from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
stemmer= PorterStemmer()
input_str=”There are several types of stemming algorithms.”
input_str=word_tokenize(input_str)
for word in input_str:
    print(stemmer.stem(word))


輸出:


There are sever type of stem algorithm.


詞形還原(Lemmatization)


詞形還原的目的,如詞幹過程,是將單詞的不同形式還原到一個常見的基礎形式。與詞幹提取過程相反,詞形還原並不是簡單地對單詞進行切斷或變形,而是通過使用詞彙知識庫來獲得正確的單詞形式。


當前常用的詞形還原工具庫包括: NLTK(WordNet Lemmatizer)spaCyTextBlobPatterngensimStanford CoreNLP,基於記憶體的淺層解析器(MBSP)Apache OpenNLPApache Lucene,文字工程通用架構(GATE)Illinois Lemmatizer  DKPro Core


示例 9:使用 NLYK 實現詞形還原


實現程式碼:   


from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize
lemmatizer=WordNetLemmatizer()
input_str=”been had done languages cities mice”
input_str=word_tokenize(input_str)
for word in input_str:
    print(lemmatizer.lemmatize(word))


輸出:


be have do language city mouse


詞性標註(POS)


詞性標註旨在基於詞語的定義和上下文意義,為給定文字中的每個單詞如名詞、動詞、形容詞和其他單詞) 分配詞性。當前有許多包含 POS 標記器的工具,包括 NLTKspaCyTextBlobPatternStanford CoreNLP,基於記憶體的淺層分析器(MBSP)Apache OpenNLPApache Lucene,文字工程通用架構(GATE)FreeLingIllinois Part of Speech Tagger 和 DKPro Core


示例 10:使用 TextBlob 實現詞性標註


實現程式碼:


input_str=”Parts of speech examples: an article, to write, interesting, easily, andof
from textblob import TextBlob
result = TextBlob(input_str)
print(result.tags)


輸出:

[(‘Parts’, u’NNS’), (‘of’, u’IN’), (‘speech’, u’NN’), (‘examples’, u’NNS’), (‘an’, u’DT’), (‘article’, u’NN’), (‘to’, u’TO’), (‘write’, u’VB’), (‘interesting’, u’VBG’), (‘easily’, u’RB’), (‘and’, u’CC’), (‘of’, u’IN’)]



詞語分塊(淺解析)


詞語分塊是一種識別句子中的組成部分如名詞、動詞、形容詞等,並將它們連結到具有不連續語法意義的高階單元如名片語或短語、動片語等) 的自然語言過程。常用的詞語分塊工具包括:NLTKTreeTagger chunkerApache OpenNLP,文字工程通用架構(GATE)FreeLing


示例 11:使用 NLYK 實現詞語分塊


第一步需要確定每個單詞的詞性。


實現程式碼:


input_str=”A black television and a white stove were bought for the new apartment of John.”
from textblob import TextBlob
result = TextBlob(input_str)
print(result.tags)


輸出:


[(‘A’, u’DT’), (‘black’, u’JJ’), (‘television’, u’NN’), (‘and’, u’CC’), (‘a’, u’DT’), (‘white’, u’JJ’), (‘stove’, u’NN’), (‘were’, u’VBD’), (‘bought’, u’VBN’), (‘for’, u’IN’), (‘the’, u’DT’), (‘new’, u’JJ’), (‘apartment’, u’NN’), (‘of’, u’IN’), (‘John’, u’NNP’)]


第二部就是進行詞語分塊


實現程式碼:


reg_exp = “NP: {<DT>?<JJ>*<NN>}”
rp = nltk.RegexpParser(reg_exp)
result = rp.parse(result.tags)
print(result)


輸出:


(S (NP A/DT black/JJ television/NN) and/CC (NP a/DT white/JJ stove/NN) were/VBD bought/VBN for/IN (NP the/DT new/JJ apartment/NN)
of/IN John/NNP)


也可以通過 result.draw() 函式繪製句子樹結構圖,如下圖所示。

     

640?wx_fmt=png


命名實體識別(Named Entity Recognition)


命名實體識別(NER) 旨在從文字中找到命名實體,並將它們劃分到事先預定義的類別人員、地點、組織、時間等


常見的命名實體識別工具如下表所示,包括:NLTKspaCy,文字工程通用架構(GATE) -- ANNIEApache OpenNLPStanford CoreNLPDKPro核心,MITIEWatson NLPTextRazorFreeLing 等。


640?wx_fmt=png



示例 12:使用 TextBlob 實現詞性標註


實現程式碼:


from nltk import word_tokenize, pos_tag, ne_chunk
input_str = “Bill works for Apple so he went to Boston for a conference.”
print ne_chunk(pos_tag(word_tokenize(input_str)))


輸出:


(S (PERSON Bill/NNP) works/VBZ for/IN Apple/NNP so/IN he/PRP went/VBD to/TO (GPE Boston/NNP) for/IN a/DT conference/NN ./.)


共指解析 Coreference resolution(回指解析度 anaphora resolution)


代詞和其他引用表達應該與正確的個體聯絡起來。Coreference resolution 在文字中指的是引用真實世界中的同一個實體。如在句子 “安德魯說他會買車”中,代詞“他”指的是同一個人,即“安德魯”。常用的 Coreference resolution 工具如下表所示,包括 Stanford CoreNLPspaCyOpen CalaisApache OpenNLP 等。


640?wx_fmt=png


搭配提取(Collocation extraction)


搭配提取過程並不是單獨、偶然發生的,它是與單片語合一同發生的過程。該過程的示例包括“打破規則 break the rules”,“空閒時間 free time”,“得出結論 draw a conclusion”,“記住 keep in mind”,“準備好 get ready”等。


640?wx_fmt=png


示例 13:使用 ICE 實現搭配提取


實現程式碼:


input=[“he and Chazz duel with all keys on the line.”]
from ICE import CollocationExtractor
extractor = CollocationExtractor.with_collocation_pipeline(“T1” , bing_key = “Temp”,pos_check = False)
print(extractor.get_collocations_of_length(input, length = 3))


輸出:


[“on the line”]



關係提取(Relationship extraction)


關係提取過程是指從非結構化的資料來源 (如原始文字獲取結構化的文字資訊。嚴格來說,它確定了命名實體如人、組織、地點的實體) 之間的關係如配偶、就業等關係。例如,從“昨天與 Mark  Emily 結婚”這句話中,我們可以提取到的資訊是 Mark  Emily 的丈夫。

     

總結


本文討論文字預處理及其主要步驟,包括正則化、符號化、詞幹化、詞形還原、詞語分塊、詞性標註、命名實體識別、共指解析、搭配提取和關係提取。還通過一些表格羅列出常見的文字預處理工具及所對應的示例。在完成這些預處理工作後,得到的結果可以用於更復雜的 NLP 任務,如機器翻譯、自然語言生成等任務。


原文連結:https://medium.com/@datamonsters/text-preprocessing-in-python-steps-tools-and-examples-bf025f872908


(本文為 AI科技大本營翻譯文章,轉載請聯絡原作者

徵稿

640?wx_fmt=png


推薦閱讀


640?wx_fmt=png

相關文章