Mysql 優化——分析表讀寫和sql效率問題
上次我們說到mysql的一些sql查詢方面的優化,包括檢視explain執行計劃,分析索引等等。 今天我們分享一些 分析mysql表讀寫、索引等等操作的sql語句。
閒話不多說,直接上程式碼:
-- 反映表的讀寫壓力
SELECT file_name AS file,
count_read,
sum_number_of_bytes_read AS total_read,
count_write,
sum_number_of_bytes_write AS total_written,
(sum_number_of_bytes_read + sum_number_of_bytes_write) AS total
FROM performance_schema.file_summary_by_instance
ORDER BY sum_number_of_bytes_read+ sum_number_of_bytes_write DESC;
-- 反映檔案的延遲
SELECT (file_name) AS file,
count_star AS total,
CONCAT(ROUND(sum_timer_wait / 3600000000000000, 2), 'h') AS total_latency,
count_read,
CONCAT(ROUND(sum_timer_read / 1000000000000, 2), 's') AS read_latency,
count_write,
CONCAT(ROUND(sum_timer_write / 3600000000000000, 2), 'h')AS write_latency
FROM performance_schema.file_summary_by_instance
ORDER BY sum_timer_wait DESC;
-- table 的讀寫延遲
SELECT object_schema AS table_schema,
object_name AS table_name,
count_star AS total,
CONCAT(ROUND(sum_timer_wait / 3600000000000000, 2), 'h') as total_latency,
CONCAT(ROUND((sum_timer_wait / count_star) / 1000000, 2), 'us') AS avg_latency,
CONCAT(ROUND(max_timer_wait / 1000000000, 2), 'ms') AS max_latency
FROM performance_schema.objects_summary_global_by_type
ORDER BY sum_timer_wait DESC;
-- 檢視錶操作頻度
SELECT object_schema AS table_schema,
object_name AS table_name,
count_star AS rows_io_total,
count_read AS rows_read,
count_write AS rows_write,
count_fetch AS rows_fetchs,
count_insert AS rows_inserts,
count_update AS rows_updates,
count_delete AS rows_deletes,
CONCAT(ROUND(sum_timer_fetch / 3600000000000000, 2), 'h') AS fetch_latency,
CONCAT(ROUND(sum_timer_insert / 3600000000000000, 2), 'h') AS insert_latency,
CONCAT(ROUND(sum_timer_update / 3600000000000000, 2), 'h') AS update_latency,
CONCAT(ROUND(sum_timer_delete / 3600000000000000, 2), 'h') AS delete_latency
FROM performance_schema.table_io_waits_summary_by_table
ORDER BY sum_timer_wait DESC ;
-- 索引狀況
SELECT OBJECT_SCHEMA AS table_schema,
OBJECT_NAME AS table_name,
INDEX_NAME as index_name,
COUNT_FETCH AS rows_fetched,
CONCAT(ROUND(SUM_TIMER_FETCH / 3600000000000000, 2), 'h') AS select_latency,
COUNT_INSERT AS rows_inserted,
CONCAT(ROUND(SUM_TIMER_INSERT / 3600000000000000, 2), 'h') AS insert_latency,
COUNT_UPDATE AS rows_updated,
CONCAT(ROUND(SUM_TIMER_UPDATE / 3600000000000000, 2), 'h') AS update_latency,
COUNT_DELETE AS rows_deleted,
CONCAT(ROUND(SUM_TIMER_DELETE / 3600000000000000, 2), 'h')AS delete_latency
FROM performance_schema.table_io_waits_summary_by_index_usage
WHERE index_name IS NOT NULL
ORDER BY sum_timer_wait DESC;
-- 全表掃描情況
SELECT object_schema,
object_name,
count_read AS rows_full_scanned
FROM performance_schema.table_io_waits_summary_by_index_usage
WHERE index_name IS NULL
AND count_read > 0
ORDER BY count_read DESC;
-- 沒有使用的index
SELECT object_schema,
object_name,
index_name
FROM performance_schema.table_io_waits_summary_by_index_usage
WHERE index_name IS NOT NULL
AND count_star = 0
AND object_schema not in ('mysql','v_monitor')
AND index_name <> 'PRIMARY'
ORDER BY object_schema, object_name;
-- 糟糕的sql問題摘要
SELECT (DIGEST_TEXT) AS query,
SCHEMA_NAME AS db,
IF(SUM_NO_GOOD_INDEX_USED > 0 OR SUM_NO_INDEX_USED > 0, '*', '') AS full_scan,
COUNT_STAR AS exec_count,
SUM_ERRORS AS err_count,
SUM_WARNINGS AS warn_count,
(SUM_TIMER_WAIT) AS total_latency,
(MAX_TIMER_WAIT) AS max_latency,
(AVG_TIMER_WAIT) AS avg_latency,
(SUM_LOCK_TIME) AS lock_latency,
format(SUM_ROWS_SENT,0) AS rows_sent,
ROUND(IFNULL(SUM_ROWS_SENT / NULLIF(COUNT_STAR, 0), 0)) AS rows_sent_avg,
SUM_ROWS_EXAMINED AS rows_examined,
ROUND(IFNULL(SUM_ROWS_EXAMINED / NULLIF(COUNT_STAR, 0), 0)) AS rows_examined_avg,
SUM_CREATED_TMP_TABLES AS tmp_tables,
SUM_CREATED_TMP_DISK_TABLES AS tmp_disk_tables,
SUM_SORT_ROWS AS rows_sorted,
SUM_SORT_MERGE_PASSES AS sort_merge_passes,
DIGEST AS digest,
FIRST_SEEN AS first_seen,
LAST_SEEN as last_seen
FROM performance_schema.events_statements_summary_by_digest d
where d
ORDER BY SUM_TIMER_WAIT DESC
limit 20;
掌握這些sql,你能輕鬆知道你的庫那些表存在問題,然後考慮怎麼去優化。
另外,有些博友問我為何每次部落格不寫全面,比如為何優化什麼的,我想說的是,大部分人只關心如何用,至於為什麼,其實可以自己去找答案,而且我也沒太多時間去寫。至於優不優質部落格我不在乎,這些算是我的自己的日常積累吧
相關文章
- MySQL複製效能優化和常見問題分析MySql優化
- Mysql慢SQL分析及優化MySql優化
- 專題《一》mysql優化 ---------主從複製,讀寫MySql優化
- mysql優化之讀寫分離MySql優化
- Mysql 表名大小寫問題MySql
- MySQL效能優化之簡單sql改寫MySql優化
- Shiro效能優化:解決Session頻繁讀寫問題優化Session
- MySQL rr下幻讀問題分析MySql
- 如何優化MySQL千萬級大表,我寫了6000字的解讀優化MySql
- mysql優化 | 儲存引擎,建表,索引,sql的優化建議MySql優化儲存引擎索引
- MySQL-SQL優化MySql優化
- [20181119]使用sql profile優化問題.txtSQL優化
- MySQL鎖問題分析-全域性讀鎖MySql
- 記錄一次SQL函式和優化的問題SQL函式優化
- MySQL表優化MySql優化
- MySQL優化篇系列文章(二)——MyISAM表鎖與InnoDB鎖問題MySql優化
- MYSQL SQL語句優化MySql優化
- MySQL SQL優化案例(一)MySql優化
- MySQL之SQL優化技巧MySql優化
- 兩種簡單分析和優化MySQL資料庫表的方法優化MySql資料庫
- iOS使用Instrument Time Profiler工具分析和優化效能問題iOS優化
- 基於mysql資料庫 關於sql優化的一些問題MySql資料庫優化
- sql優化專題SQL優化
- MySQL 優化五(關聯查詢子查詢以及 in 的效率問題)(高階篇)MySql優化
- Mysql表引擎優化MySql優化
- SQL優化案例-從執行計劃定位SQL問題(三)SQL優化
- 資料庫查詢優化:使用explain分析sql語句執行效率資料庫優化AISQL
- 資料庫sql的優化問題的面試題資料庫SQL優化面試題
- MySQL之SQL語句優化MySql優化
- MYSQL資料庫------SQL優化MySql資料庫優化
- MySQL問題定位-效能優化之我見MySql優化
- 線上MySQL讀寫分離,出現寫完讀不到問題如何解決MySql
- mysql調優從書寫sql開始MySql
- MySQL大表優化方案MySql優化
- MySQL優化學習手札(四) 單表訪問方法MySql優化
- 複雜SQL分析和編寫SQL
- 查詢效率提升10倍!3種優化方案,幫你解決MySQL深分頁問題優化MySql
- Mysql(MyISAM)的讀寫互斥鎖問題的解決方法MySql
- MySQL 資料庫與 SQL 優化MySql資料庫優化